Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Estimating Withdrawal Time in Colonoscopies

  • Conference paper
  • First Online:
Computer Vision – ECCV 2022 Workshops (ECCV 2022)

Abstract

The Colonoscopic Withdrawal Time (CWT) is the time required to withdraw the endoscope during a colonoscopy procedure. Estimating the CWT has several applications, including as a performance metric for gastroenterologists, and as an augmentation to polyp detection systems. We present a method for estimating the CWT directly from colonoscopy video based on three separate modules: egomotion computation; depth estimation; and anatomical landmark classification. Features are computed based on the modules’ outputs, which are then used to classify each frame as representing forward, stagnant, or backward motion. This allows for the optimal detection of the change points between these phases based on efficient maximization of the likelihood; from which the CWT follows directly. We collect a dataset consisting of 788 videos of colonoscopy procedures, with the CWT for each annotated by gastroenterologists. Our algorithm achieves a mean error of 1.20 min, which nearly matches the inter-rater disagreement of 1.17 min.

V. Dashinsky and I. Shimshoni—Work performed while at Alphabet.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Cheng et al. [10] studied the effect of detecting polyps during colonoscopic insertion and found it did not improve ADR.

References

  1. Cancer Facts & Figures (2019). https://www.cancer.org/research/cancer-facts-statistics/all-cancer-facts-figures/cancer-facts-figures-2019.html. Accessed 26 Nov 2019

  2. Colorectal Cancer Fact Sheet (2018). https://gco.iarc.fr/today/data/factsheets/cancers/10_8_9-Colorectum-fact-sheet.pdf. Accessed 08 Jan 2020

  3. Aghanouri, M., Ghaffari, A., Serej, N.D., Rabbani, H., Adibi, P.: New image-guided method for localisation of an active capsule endoscope in the stomach. IET Image Process. 13(12), 2321–2327 (2019)

    Article  Google Scholar 

  4. Almalioglu, Y., Saputra, M.R.U., de Gusmao, P.P., Markham, A., Trigoni, N.: GANVO: unsupervised deep monocular visual odometry and depth estimation with generative adversarial networks. In: 2019 International Conference on Robotics and Automation (ICRA), pp. 5474–5480. IEEE (2019)

    Google Scholar 

  5. Ballesteros, C., Trujillo, M., Mazo, C., Chaves, D., Hoyos, J.: Automatic classification of non-informative frames in colonoscopy videos using texture analysis. In: Beltrán-Castañón, C., Nyström, I., Famili, F. (eds.) CIARP 2016. LNCS, vol. 10125, pp. 401–408. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-52277-7_49

    Chapter  Google Scholar 

  6. Bar, O., et al.: Impact of data on generalization of AI for surgical intelligence applications. Sci. Rep. 10(1), 1–12 (2020)

    Article  Google Scholar 

  7. Barclay, R.L., Vicari, J.J., Doughty, A.S., Johanson, J.F., Greenlaw, R.L.: Colonoscopic withdrawal times and adenoma detection during screening colonoscopy. New Engl. J. Med. 355(24), 2533–2541 (2006)

    Article  Google Scholar 

  8. Casser, V., Pirk, S., Mahjourian, R., Angelova, A.: Depth prediction without the sensors: leveraging structure for unsupervised learning from monocular videos. In: Thirty-Third AAAI Conference on Artificial Intelligence (AAAI-2019) (2019)

    Google Scholar 

  9. Casser, V., Pirk, S., Mahjourian, R., Angelova, A.: Unsupervised monocular depth and ego-motion learning with structure and semantics. In: CVPR Workshop on Visual Odometry and Computer Vision Applications Based on Location Cues (VOCVALC) (2019)

    Google Scholar 

  10. Cheng, C.L., et al.: Comparison of polyp detection during both insertion and withdrawal versus only withdrawal of colonoscopy: a prospective randomized trial. J. Gastroent. Hepatol. 34(8), 1377–1383 (2019)

    Article  Google Scholar 

  11. Cho, M., Kim, J.H., Hong, K.S., Kim, J.S., Kong, H.J., Kim, S.: Identification of cecum time-location in a colonoscopy video by deep learning analysis of colonoscope movement. PeerJ 7 (2019). https://doi.org/10.7717/peerj.7256

  12. Cho, M., Kim, J.H., Kong, H.J., Hong, K.S., Kim, S.: A novel summary report of colonoscopy: timeline visualization providing meaningful colonoscopy video information. Int. J. Colorectal Dis. 33(5), 549–559 (2018). https://doi.org/10.1007/s00384-018-2980-3

    Article  Google Scholar 

  13. Czempiel, T., et al.: TeCNO: surgical phase recognition with multi-stage temporal convolutional networks. arXiv preprint arXiv:2003.10751 (2020)

  14. Dietterich, T.G., Lathrop, R.H., Lozano-Pérez, T.: Solving the multiple instance problem with axis-parallel rectangles. Artif. Intell. 89(1–2), 31–71 (1997)

    Article  MATH  Google Scholar 

  15. Farha, Y.A., Gall, J.: MS-TCN: multi-stage temporal convolutional network for action segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3575–3584 (2019)

    Google Scholar 

  16. Freedman, D., et al.: Detecting deficient coverage in colonoscopies. IEEE Trans. Med. Imaging 39(11), 3451–3462 (2020). https://doi.org/10.1109/TMI.2020.2994221

    Article  Google Scholar 

  17. Friedman, J.H.: Greedy function approximation: a gradient boosting machine. Ann. Stat., 1189–1232 (2001)

    Google Scholar 

  18. Friedman, J.H.: Stochastic gradient boosting. Comput. Stat. Data Anal. 38(4), 367–378 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  19. Garg, R., B.G., V.K., Carneiro, G., Reid, I.: Unsupervised CNN for single view depth estimation: geometry to the rescue. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9912, pp. 740–756. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46484-8_45

    Chapter  Google Scholar 

  20. Gordon, A., Li, H., Jonschkowski, R., Angelova, A.: Depth from videos in the wild: unsupervised monocular depth learning from unknown cameras. In: Proceedings of the IEEE International Conference on Computer Vision (2019)

    Google Scholar 

  21. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  22. Horn, B.K., Schunck, B.G.: Determining optical flow. In: Techniques and Applications of Image Understanding, vol. 281, pp. 319–331. International Society for Optics and Photonics (1981)

    Google Scholar 

  23. Kaminski, M.F.: Increased rate of adenoma detection associates with reduced risk of colorectal cancer and death. Gastroenterology 153(1), 98–105 (2017)

    Article  Google Scholar 

  24. Lee, S.H., et al.: An adequate level of training for technical competence in screening and diagnostic colonoscopy: a prospective multicenter evaluation of the learning curve. Gastrointest. Endosc. 67(4), 683–689 (2008)

    Article  Google Scholar 

  25. Lee, T., et al.: Longer mean colonoscopy withdrawal time is associated with increased adenoma detection: evidence from the Bowel Cancer Screening Programme in England. Endoscopy 45(01), 20–26 (2013)

    Google Scholar 

  26. Li, R., Wang, S., Long, Z., Gu, D.: UndeepVO: monocular visual odometry through unsupervised deep learning. In: 2018 IEEE International Conference on Robotics and Automation (ICRA), pp. 7286–7291. IEEE (2018)

    Google Scholar 

  27. Li, Y., Ding, A., Cao, Y., Liu, B., Chen, S., Liu, X.: Detection of endoscope withdrawal time in colonoscopy videos. In: IEEE International Conference on Machine Learning and Applications (ICMLA), pp. 67–74 (2021)

    Google Scholar 

  28. Mahjourian, R., Wicke, M., Angelova, A.: Unsupervised learning of depth and ego-motion from monocular video using 3D geometric constraints. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5667–5675 (2018)

    Google Scholar 

  29. Pinheiro, G., Coelho, P., Salgado, M., Oliveira, H.P., Cunha, A.: Deep homography based localization on videos of endoscopic capsules. In: 2018 IEEE International Conference on Bioinformatics and Biomedicine (BIBM), pp. 724–727. IEEE (2018)

    Google Scholar 

  30. Scaramuzza, D., Fraundorfer, F.: Visual odometry [tutorial]. IEEE Rob. Autom. Maga. 18(4), 80–92 (2011)

    Article  Google Scholar 

  31. Scaramuzza, D., Fraundorfer, F.: Visual odometry part ii: matching, robustness, optimization and applications. IEEE Rob. Autom. Maga. 19(2), 78–90 (2012)

    Article  Google Scholar 

  32. Simmons, D.T., et al.: Impact of endoscopist withdrawal speed on polyp yield: implications for optimal colonoscopy withdrawal time. Aliment. Pharmacol. Therapeut. 24(6), 965–971 (2006)

    Article  Google Scholar 

  33. Twinanda, A.P., Shehata, S., Mutter, D., Marescaux, J., De Mathelin, M., Padoy, N.: EndoNet: a deep architecture for recognition tasks on laparoscopic videos. IEEE Trans. Med. Imaging 36(1), 86–97 (2016)

    Article  Google Scholar 

  34. Ummenhofer, B., et al.: DeMoN: depth and motion network for learning monocular stereo. In: CVPR (2017)

    Google Scholar 

  35. Urban, G., et al.: Deep learning localizes and identifies polyps in real time with 96% accuracy in screening colonoscopy. Gastroenterology 155(4), 1069–1078 (2018)

    Article  Google Scholar 

  36. Wang, M., Shi, Q., Song, S., Hu, C., Meng, M.Q.H.: A novel relative position estimation method for capsule robot moving in gastrointestinal tract. Sensors 19(12), 2746 (2019)

    Article  Google Scholar 

  37. Wang, P., et al.: Development and validation of a deep-learning algorithm for the detection of polyps during colonoscopy. Nat. Biomed. Eng. 2(10), 741–748 (2018)

    Article  Google Scholar 

  38. Wang, S., Clark, R., Wen, H., Trigoni, N.: DeepVO: towards end-to-end visual odometry with deep recurrent convolutional neural networks. In: 2017 IEEE International Conference on Robotics and Automation (ICRA), pp. 2043–2050. IEEE (2017)

    Google Scholar 

  39. Yang, N., Wang, R., Stuckler, J., Cremers, D.: Deep virtual stereo odometry: leveraging deep depth prediction for monocular direct sparse odometry. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 817–833 (2018)

    Google Scholar 

  40. Yin, Z., Shi, J.: GeoNet: unsupervised learning of dense depth, optical flow and camera pose. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1983–1992 (2018)

    Google Scholar 

  41. Young, Y.G., et al.: Colonoscopic withdrawal time and adenoma detection in the right colon. Medicine 97 (2018)

    Google Scholar 

  42. Zhan, H., Garg, R., Saroj Weerasekera, C., Li, K., Agarwal, H., Reid, I.: Unsupervised learning of monocular depth estimation and visual odometry with deep feature reconstruction. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 340–349 (2018)

    Google Scholar 

  43. Zhou, H., Ummenhofer, B., Brox, T.: DeepTAM: deep tracking and mapping. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 822–838 (2018)

    Google Scholar 

  44. Zhou, T., Brown, M., Snavely, N., Lowe, D.G.: Unsupervised learning of depth and ego-motion from video. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1851–1858 (2017)

    Google Scholar 

Download references

Acknowledgment

The authors would like to thank Gaddi Menahem and Yaron Frid of Orpheus Medical Ltd. for helping in the provision of data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Regev Cohen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Katzir, L. et al. (2023). Estimating Withdrawal Time in Colonoscopies. In: Karlinsky, L., Michaeli, T., Nishino, K. (eds) Computer Vision – ECCV 2022 Workshops. ECCV 2022. Lecture Notes in Computer Science, vol 13803. Springer, Cham. https://doi.org/10.1007/978-3-031-25066-8_28

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-25066-8_28

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-25065-1

  • Online ISBN: 978-3-031-25066-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics