Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

An Evolutionary Learning Approach Towards the Open Challenge of IoT Device Identification

  • Conference paper
  • First Online:
Security and Privacy in Communication Networks (SecureComm 2022)

Abstract

Internet of Things (IoT) device identification has become an indispensable prerequisite for secure network management and security policy implementation. However, existing passive device identification methods work under a “closed-world” assumption, failing to take into account the emergence of new and unfamiliar devices in open scenarios. To combat the open-world challenge, we propose a novel evolutionary model which can continuously learn with new device traffic. Our model employs a decoupled architecture suitable for evolutionary learning, which consists of device feature representation and device inference. For device feature representation, an auto-encoder based on metric learning is innovatively introduced to mine latent feature representation of device traffic and form independent compact clusters for each device. For device inference, the nearest class mean (NCM) classification strategy is adopted on the feature representation. In addition, to alleviate the forgetting of old devices during evolutionary learning with new devices, we develop a less-forgetting constraint based on spatial knowledge distillation and impose control on the distribution distance between clusters to reduce inter-class interference. We evaluate our method on the union of three public IoT traffic datasets, in which the accuracy is as high as 87.9% after multi-stage evolutionary learning, outperforming all state-of-the-art methods under diverse experimental settings.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Belouadah, E., Popescu, A.: Il2m: Class incremental learning with dual memory. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 583–592 (2019)

    Google Scholar 

  2. Castro, F.M., Marín-Jiménez, M.J., Guil, N., Schmid, C., Alahari, K.: End-to-end incremental learning. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11216, pp. 241–257. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01258-8_15

    Chapter  Google Scholar 

  3. Charyyev, B., Gunes, M.H.: Iot traffic flow identification using locality sensitive hashes. In: ICC 2020–2020 IEEE International Conference on Communications (ICC), pp. 1–6. IEEE (2020)

    Google Scholar 

  4. Delange, M., et al.: A continual learning survey: Defying forgetting in classification tasks. IEEE Trans. Pattern Anal. Mach. Intell. (2021)

    Google Scholar 

  5. Fan, L., et al.: An iot device identification method based on semi-supervised learning. In: 2020 16th International Conference on Network and Service Management (CNSM), pp. 1–7. IEEE (2020)

    Google Scholar 

  6. Feng, X., Li, Q., Wang, H., Sun, L.: Acquisitional rule-based engine for discovering \(\{\)Internet-of-Things\(\}\) devices. In: 27th USENIX Security Symposium (USENIX Security 18), pp. 327–341 (2018)

    Google Scholar 

  7. Hinton, G., Vinyals, O., Dean, J., et al.: Distilling the knowledge in a neural network, vol. 2(7). arXiv preprint arXiv:1503.02531 (2015)

  8. Hou, S., Pan, X., Loy, C.C., Wang, Z., Lin, D.: Learning a unified classifier incrementally via rebalancing. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 831–839 (2019)

    Google Scholar 

  9. Hu, X., Li, H., Shi, Z., Yu, N., Zhu, H., Sun, L.: A robust IoT device identification method with unknown traffic detection. In: Liu, Z., Wu, F., Das, S.K. (eds.) WASA 2021. LNCS, vol. 12937, pp. 190–202. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-85928-2_15

    Chapter  Google Scholar 

  10. Kirkpatrick, J., et al.: Overcoming catastrophic forgetting in neural networks. Proc. Natl. Acad. Sci. 114(13), 3521–3526 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  11. Li, Z., Hoiem, D.: Learning without forgetting. IEEE Trans. Pattern Anal. Mach. Intell. 40(12), 2935–2947 (2017)

    Article  Google Scholar 

  12. Liu, Y., Wang, J., Li, J., Niu, S., Song, H.: Machine learning for the detection and identification of internet of things (iot) devices: A survey. arXiv preprint arXiv:2101.10181 (2021)

  13. Liu, Z., Cai, L., Zhao, L., Yu, A., Meng, D.: Towards open world traffic classification. In: Gao, D., Li, Q., Guan, X., Liao, X. (eds.) ICICS 2021. LNCS, vol. 12918, pp. 331–347. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-86890-1_19

    Chapter  Google Scholar 

  14. Lopez-Martin, M., Carro, B., Sanchez-Esguevillas, A., Lloret, J.: Network traffic classifier with convolutional and recurrent neural networks for internet of things. IEEE Access 5, 18042–18050 (2017)

    Article  Google Scholar 

  15. Masana, M., Liu, X., Twardowski, B., Menta, M., Bagdanov, A.D., van de Weijer, J.: Class-incremental learning: survey and performance evaluation on image classification. arXiv preprint arXiv:2010.15277 (2020)

  16. Meidan, Y., et al.: Profiliot: a machine learning approach for iot device identification based on network traffic analysis. In: Proceedings of the Symposium On Applied Computing, pp. 506–509 (2017)

    Google Scholar 

  17. Miettinen, M., Marchal, S., Hafeez, I., Asokan, N., Sadeghi, A.R., Tarkoma, S.: Iot sentinel: Automated device-type identification for security enforcement in iot. In: 2017 IEEE 37th International Conference on Distributed Computing Systems (ICDCS), pp. 2177–2184. IEEE (2017)

    Google Scholar 

  18. Ortiz, J., Crawford, C., Le, F.: Devicemien: network device behavior modeling for identifying unknown iot devices. In: Proceedings of the International Conference on Internet of Things Design and Implementation, pp. 106–117 (2019)

    Google Scholar 

  19. Parisi, G.I., Kemker, R., Part, J.L., Kanan, C., Wermter, S.: Continual lifelong learning with neural networks: A review. Neural Netw. 113, 54–71 (2019)

    Article  Google Scholar 

  20. Rebuffi, S.A., Kolesnikov, A., Sperl, G., Lampert, C.H.: icarl: Incremental classifier and representation learning. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2001–2010 (2017)

    Google Scholar 

  21. Schroff, F., Kalenichenko, D., Philbin, J.: Facenet: A unified embedding for face recognition and clustering. In: Proceedings of the IEEE Conference On Computer Vision And Pattern Recognition, pp. 815–823 (2015)

    Google Scholar 

  22. Shahid, M.R., Blanc, G., Zhang, Z., Debar, H.: Iot devices recognition through network traffic analysis. In: 2018 IEEE International Conference on Big Data (Big Data), pp. 5187–5192. IEEE (2018)

    Google Scholar 

  23. Sivanathan, A.: Iot behavioral monitoring via network traffic analysis. arXiv preprint arXiv:2001.10632 (2020)

  24. Sivanathan, A., et al.: Classifying iot devices in smart environments using network traffic characteristics. IEEE Trans. Mob. Comput. 18(8), 1745–1759 (2018)

    Article  Google Scholar 

  25. Sivanathan, A., et al.: Characterizing and classifying iot traffic in smart cities and campuses. In: 2017 IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS), pp. 559–564. IEEE (2017)

    Google Scholar 

  26. Trimananda, R., Varmarken, J., Markopoulou, A., Demsky, B.: Pingpong: Packet-level signatures for smart home device events. arXiv preprint arXiv:1907.11797 (2019)

  27. Wan, Y., Xu, K., Wang, F., Xue, G.: Iotathena: Unveiling iot device activities from network traffic. IEEE Trans. Wireless Commun. 21(1), 651–664 (2021)

    Article  Google Scholar 

  28. Yang, L., et al.: \(\{\)CADE\(\}\): Detecting and explaining concept drift samples for security applications. In: 30th \(\{\)USENIX\(\}\) Security Symposium (\(\{\)USENIX\(\}\) Security 2021) (2021)

    Google Scholar 

  29. Yin, F., Yang, L., Wang, Y., Dai, J.: Iot etei: End-to-end iot device identification method. In: 2021 IEEE Conference on Dependable and Secure Computing (DSC), pp. 1–8. IEEE (2021)

    Google Scholar 

  30. Yu, L., Liu, T., Zhou, Z., Zhu, Y., Liu, Q., Tan, J.: Wdmti: wireless device manufacturer and type identification using hierarchical dirichlet process. In: 2018 IEEE 15th International Conference on Mobile Ad Hoc and Sensor Systems (MASS), pp. 19–27. IEEE (2018)

    Google Scholar 

  31. Yu, L., Luo, B., Ma, J., Zhou, Z., Liu, Q.: You are what you broadcast: Identification of mobile and \(\{\)IoT\(\}\) devices from (public)\(\{\)WiFi\(\}\). In: 29th USENIX security symposium (USENIX security 2020). pp. 55–72 (2020)

    Google Scholar 

Download references

Acknowledgement

This work was supported by the National Key Research and Development Program of China (Grant No.2018YFB0803402), the Young Scientists Fund of the National Natural Science Foundation of China (Grant No.61702504) and the Industrial Internet Innovation and Development Project (Grant No.KFZ0120200004).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongsong Zhu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bian, J., Yu, N., Li, H., Zhu, H., Wang, Q., Sun, L. (2023). An Evolutionary Learning Approach Towards the Open Challenge of IoT Device Identification. In: Li, F., Liang, K., Lin, Z., Katsikas, S.K. (eds) Security and Privacy in Communication Networks. SecureComm 2022. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 462. Springer, Cham. https://doi.org/10.1007/978-3-031-25538-0_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-25538-0_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-25537-3

  • Online ISBN: 978-3-031-25538-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics