Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Learning Long-Horizon Robot Exploration Strategies for Multi-object Search in Continuous Action Spaces

  • Conference paper
  • First Online:
Robotics Research (ISRR 2022)

Part of the book series: Springer Proceedings in Advanced Robotics ((SPAR,volume 27))

Included in the following conference series:

Abstract

Recent advances in vision-based navigation and exploration have shown impressive capabilities in photorealistic indoor environments. However, these methods still struggle with long-horizon tasks and require large amounts of data to generalize to unseen environments. In this work, we present a novel reinforcement learning approach for multi-object search that combines short-term and long-term reasoning in a single model while avoiding the complexities arising from hierarchical structures. In contrast to existing multi-object search methods that act in granular discrete action spaces, our approach achieves exceptional performance in continuous action spaces. We perform extensive experiments and show that it generalizes to unseen apartment environments with limited data. Furthermore, we demonstrate zero-shot transfer of the learned policies to an office environment in real world experiments.

F. Schmalstieg and D. Honerkamp—These authors contributed equally.

This work was funded by the European Union’s Horizon 2020 research and innovation program under grant agreement No 871449-OpenDR.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 249.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    http://svl.stanford.edu/igibson/challenge2020.html.

References

  1. Anderson, P., et al.: On evaluation of embodied navigation agents. arXiv preprint arXiv:1807.06757 (2018)

  2. Beeching, E., Debangoye, J., Simonin, O., Wolf, C.: Deep reinforcement learning on a budget: 3D control and reasoning without a supercomputer. In: 25th International Conference on Pattern Recognition (ICPR), pp. 158–165 (2021)

    Google Scholar 

  3. Cattaneo, D., Vaghi, M., Valada, A.: LCDNet: deep loop closure detection and point cloud registration for LiDAR SLAM. IEEE Trans. Robot. 38, 2074–2093 (2022)

    Article  Google Scholar 

  4. Chaplot, D.S., Gandhi, D., Gupta, S., Gupta, A., Salakhutdinov, R.: Learning to explore using active neural slam. In: International Conference on Learning Representations (ICLR) (2020)

    Google Scholar 

  5. Chaplot, D.S., Gandhi, D.P., Gupta, A., Salakhutdinov, R.R.: Object goal navigation using goal-oriented semantic exploration. In: Proceedings of the Conference on Neural Information Processing Systems (NeurIPS), vol. 33, pp. 4247–4258 (2020)

    Google Scholar 

  6. Chen, C., et al.: SoundSpaces: audio-visual navigation in 3D environments. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12351, pp. 17–36. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58539-6_2

    Chapter  Google Scholar 

  7. Chen, C., Majumder, S., Al-Halah, Z., Gao, R., Ramakrishnan, S.K., Grauman, K.: Learning to set waypoints for audio-visual navigation. In: International Conference on Learning Representations (ICLR) (2020)

    Google Scholar 

  8. Chen, T., Gupta, S., Gupta, A.: Learning exploration policies for navigation. In: International Conference on Learning Representations (ICLR) (2019)

    Google Scholar 

  9. Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: ImageNet: a large-scale hierarchical image database. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 248–255. IEEE (2009)

    Google Scholar 

  10. Druon, R., Yoshiyasu, Y., Kanezaki, A., Watt, A.: Visual object search by learning spatial context. IEEE Robot. Autom. Lett. 5(2), 1279–1286 (2020)

    Article  Google Scholar 

  11. Fang, K., Toshev, A., Fei-Fei, L., Savarese, S.: Scene memory transformer for embodied agents in long-horizon tasks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 538–547 (2019)

    Google Scholar 

  12. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016)

    Google Scholar 

  13. Henriques, J.F., Vedaldi, A.: MapNet: an allocentric spatial memory for mapping environments. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 8476–8484 (2018)

    Google Scholar 

  14. Honerkamp, D., Welschehold, T., Valada, A.: Learning kinematic feasibility for mobile manipulation through deep reinforcement learning. IEEE Robot. Autom. Lett. 6(4), 6289–6296 (2021)

    Article  Google Scholar 

  15. Hurtado, J.V., Londoño, L., Valada, A.: From learning to relearning: a framework for diminishing bias in social robot navigation. Front. Robot. AI 8, 69 (2021)

    Article  Google Scholar 

  16. Kim, J., Lee, E.S., Lee, M., Zhang, D., Kim, Y.M.: SGoLAM: simultaneous goal localization and mapping for multi-object goal navigation. arXiv preprint arXiv:2110.07171 (2021)

  17. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)

  18. Kohlbrecher, S., Meyer, J., von Stryk, O., Klingauf, U.: A flexible and scalable slam system with full 3D motion estimation. In: Proceedings of the IEEE International Symposium on Safety, Security and Rescue Robotics (SSRR). IEEE (2011)

    Google Scholar 

  19. Li, C., et al.: iGibson 2.0: object-centric simulation for robot learning of everyday household tasks. In: 2021 Conference on Robot Learning (CoRL), Proceedings of Machine Learning Research, vol. 164, pp. 455–465. PMLR (2021). https://proceedings.mlr.press/v164/li22b.html

  20. Min, S.Y., Chaplot, D.S., Ravikumar, P.K., Bisk, Y., Salakhutdinov, R.: FILM: following instructions in language with modular methods. In: International Conference on Learning Representations (ICLR) (2022)

    Google Scholar 

  21. Oh, J., Chockalingam, V., Lee, H., et al.: Control of memory, active perception, and action in minecraft. In: International Conference on Machine Learning, pp. 2790–2799 (2016)

    Google Scholar 

  22. Qiu, Y., Pal, A., Christensen, H.I.: Learning hierarchical relationships for object-goal navigation. In: 2020 Conference on Robot Learning (CoRL) (2020)

    Google Scholar 

  23. Raffin, A., Hill, A., Gleave, A., Kanervisto, A., Ernestus, M., Dormann, N.: Stable-baselines3: reliable reinforcement learning implementations. J. Mach. Learn. Res. 22(268), 1–8 (2021)

    Google Scholar 

  24. Savva, M., et al.: Habitat: a platform for embodied AI research. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 9339–9347 (2019)

    Google Scholar 

  25. Schulman, J., Wolski, F., Dhariwal, P., Radford, A., Klimov, O.: Proximal policy optimization algorithms. arXiv preprint arXiv:1707.06347 (2017)

  26. Vödisch, N., Cattaneo, D., Burgard, W., Valada, A.: Continual SLAM: beyond lifelong simultaneous localization and mapping through continual learning. arXiv preprint arXiv:2203.01578 (2022)

  27. Wani, S., Patel, S., Jain, U., Chang, A., Savva, M.: MultiON: benchmarking semantic map memory using multi-object navigation. In: Proceedings of the Conference on Neural Information Processing Systems (NeurIPS), vol. 33, pp. 9700–9712 (2020)

    Google Scholar 

  28. Yamauchi, B.: A frontier-based approach for autonomous exploration. In: Proceedings 1997 IEEE International Symposium on Computational Intelligence in Robotics and Automation (CIRA), pp. 146–151 (1997)

    Google Scholar 

  29. Younes, A., Honerkamp, D., Welschehold, T., Valada, A.: Catch me if you hear me: audio-visual navigation in complex unmapped environments with moving sounds. arXiv preprint arXiv:2111.14843 (2021)

  30. Zhang, J., Tai, L., Boedecker, J., Burgard, W., Liu, M.: Neural SLAM: learning to explore with external memory. arXiv preprint arXiv:1706.09520 (2017)

  31. Zhu, Y., et al.: Target-driven visual navigation in indoor scenes using deep reinforcement learning. In: International Conference on Robotics and Automation, pp. 3357–3364 (2017)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fabian Schmalstieg .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (mp4 9254 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Schmalstieg, F., Honerkamp, D., Welschehold, T., Valada, A. (2023). Learning Long-Horizon Robot Exploration Strategies for Multi-object Search in Continuous Action Spaces. In: Billard, A., Asfour, T., Khatib, O. (eds) Robotics Research. ISRR 2022. Springer Proceedings in Advanced Robotics, vol 27. Springer, Cham. https://doi.org/10.1007/978-3-031-25555-7_5

Download citation

Publish with us

Policies and ethics