Abstract
MicroRacer is a simple, open source environment inspired by car racing especially meant for the didactics of Deep Reinforcement Learning. The complexity of the environment has been explicitly calibrated to allow users to experiment with many different methods, networks and hyperparameters settings without requiring sophisticated software or exceedingly long training times. Baseline agents for major learning algorithms such as DDPG, PPO, SAC, TD3 and DSAC are provided too, along with a preliminary comparison in terms of training time and performance.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
- 2.
- 3.
- 4.
Our actors exploit a simplified observation of the state discussed in Sect. 5.
References
Asperti, A., Cortesi, D., De Pieri, C., Pedrini, G., Sovrano, F.: Crawling in rogue’s dungeons with deep reinforcement techniques. IEEE Trans. Games 12(2), 177–186 (2020)
Asperti, A., Cortesi, D., Sovrano, F.: Crawling in rogue’s dungeons with (partitioned) A3C. In: Machine Learning, Optimization, and Data Science - 4th International Conference, LOD 2018, Volterra, Italy, 13–16 Sep 2018, Revised Selected Papers, vol. 11331 of Lecture Notes in Computer Science, pp. 264–275. Springer (2018). https://doi.org/10.1007/978-3-030-13709-0_22
Balaji, B., et al. DeepRacer: educational autonomous racing platform for experimentation with sim2real reinforcement learning. arXiv preprint arXiv:abs/1911.01562 (2019)
Behnel, S., Bradshaw, R., Citro, C., Dalcin, L., Seljebotn, D.S., Smith, K.: Cython: the best of both worlds. Comput. Sci. Eng. 13(2), 31–39 (2011)
Bellemare, M.G., Dabney, W., Rowland, M.: Distributional Reinforcement Learning. MIT Press, Cambridge (2022). https://www.distributional-rl.org
Bellemare, M.G., Naddaf, Y., Veness, J., Bowling, M.: The arcade learning environment: an evaluation platform for general agents. J. Artif. Intell. Res. (JAIR) 47, 253–279 (2013)
Bisong, E.: Google Colaboratory, pp. 59–64. Apress, Berkeley (2019)
Brockman, G., et al.: Openai gym. arXiv preprint arXiv:abs/1606.01540 (2016)
Cardamone, L., Loiacono, D., Lanzi, P.L., Bardelli, A.P.: Searching for the optimal racing line using genetic algorithms. In: Proceedings of the 2010 IEEE Conference on Computational Intelligence and Games, pp. 388–394 (2010)
Chen, B., Francis, J., Oh, J., Nyberg, E., Herbert, S.L.: Safe autonomous racing via approximate reachability on ego-vision (2021)
Brutto, M.D.: MicroRacer: development of a didactic environment for deep reinforcement learning. Master’s thesis, University of Bologna, School of Science, Session III 2021–22
Dosovitskiy, A., Ros, G., Codevilla, F., López, A.M., Koltun, V.: CARLA: an open urban driving simulator. In: 1st Annual Conference on Robot Learning, CoRL 2017, Mountain View, California, USA, 13–15 Nov 2017, Proceedings, pp. 1–16. PMLR (2017)
Duan, J., Guan, Y., Li, S.E., Ren, Y., Sun, Q., Cheng, B.: Distributional soft actor-critic: off-policy reinforcement learning for addressing value estimation errors. In: IEEE Transactions on Neural Networks and Learning Systems, pp. 1–15 (2021)
Evans, B., Engelbrecht, H.A., Jordaan, H.W.: Learning the subsystem of local planning for autonomous racing. In: 20th International Conference on Advanced Robotics, ICAR 2021, Ljubljana, Slovenia, Dec 6–10 2021, pp. 601–606. IEEE (2021)
Evans, B., Engelbrecht, H.A., Jordaan, H.W.: Reward signal design for autonomous racing. In: 20th International Conference on Advanced Robotics, ICAR 2021, Ljubljana, Slovenia, 6–10 Dec 2021, pp. 455–460. IEEE (2021)
Fujimoto, S., Hoof, H.V., Meger, D.: Addressing function approximation error in actor-critic methods. In: Jennifer, G., Dy., Krause, A. (eds.) Proceedings of the 35th International Conference on Machine Learning, ICML 2018, Stockholmsmässan, Stockholm, Sweden, 10–15 Jul 2018, vol. 80 of Proceedings of Machine Learning Research, pp. 1582–1591. PMLR (2018)
Galletti, G.: Deep reinforcement learning nell’ambiente pytorcs. Master’s thesis, University of Bologna, school of Science, Session III 2021
Goldfain, B., et al.: AutoRally: an open platform for aggressive autonomous driving. IEEE Control Syst. Mag. 39(1), 26–55 (2019)
Haarnoja, T., Zhou, A., Abbeel, P., Levine, S.: Soft actor-critic: off-policy maximum entropy deep reinforcement learning with a stochastic actor. In: Proceedings of the 35th International Conference on Machine Learning, ICML 2018, Stockholmsmässan, Stockholm, Sweden, 10–15 Jul 2018, vol. 80 of Proceedings of Machine Learning Research, pp. 1856–1865. PMLR (2018)
Herman, J., et al.: Learn-to-Race: a multimodal control environment for autonomous racing. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 9793–9802 (2021)
Li, C.: Challenging on car racing problem from openai gym. arXiv preprint arXiv:abs/1911.04868 (2019)
Lillicrap, T.P., et al.: Continuous control with deep reinforcement learning. In: Bengio, Y., LeCun, Y. (eds.) 4th International Conference on Learning Representations, ICLR 2016, San Juan, Puerto Rico, 2–4 May 2016, Conference Track Proceedings (2016)
Loiacono, D., et al.: The 2009 simulated car racing championship. IEEE Trans. Comput. Intell. AI Games 2(2), 131–147 (2010)
Mnih, V., et al.: Playing atari with deep reinforcement learning. arXiv preprint arXiv:abs/1312.5602 (2013)
Mnih, V., et al.: Human-level control through deep reinforcement learning. Nature 518(7540), 529–533 (2015)
Paull, L., et al.: Duckietown: an open, inexpensive and flexible platform for autonomy education and research. In: 2017 IEEE International Conference on Robotics and Automation, ICRA 2017, Singapore, Singapore, May 29 - June 3, 2017, pp. 1497–1504 (2017)
Plappert, M., et al.: Parameter space noise for exploration. In: 6th International Conference on Learning Representations, ICLR 2018, Vancouver, BC, Canada, April 30 - May 3, 2018, Conference Track Proceedings. OpenReview.net (2018)
Schulman, J., Wolski, F., Dhariwal, P., Radford, A., Klimov, O.: Proximal policy optimization algorithms. arXiv preprint arXiv:abs/1707.06347 (2017)
Silver, D., Lever, G., Heess, N., Degris, T., Wierstra, D., Riedmiller, M.A.: Deterministic policy gradient algorithms. In: Proceedings of the 31th International Conference on Machine Learning, ICML 2014, Beijing, China, 21–26 June 2014, vol. 32 of JMLR Workshop and Conference Proceedings, pp. 387–395. JMLR.org (2014)
Singh, S.P., Barto, A.G., Chentanez, N.: Intrinsically motivated reinforcement learning. In: Advances in Neural Information Processing Systems 17 [Neural Information Processing Systems, NIPS 2004, December 13–18, 2004, Vancouver, British Columbia, Canada], pp. 1281–1288 (2004)
Richard, S.: Sutton and Andrew G, 1st edn. Barto. Introduction to Reinforcement Learning. MIT Press, Cambridge, MA, USA (1998)
Vamvoudakis, K.G., Wan, Y., Lewis, F.L., Cansever, D. (eds.): Handbook of Reinforcement Learning and Control. SSDC, vol. 325. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-60990-0
Vorabbi, S.: Analisi dell’ambiente aws deepracer per la sperimentazione di tecniche di reinforcement learning. Master’s thesis, University of Bologna, school of Science, Session II 2021
Wang, H., et al.: Deep reinforcement learning: a survey. Frontiers Inf. Technol. Electron. Eng. 21(12), 1726–1744 (2020)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Asperti, A., Del Brutto, M. (2023). MicroRacer: A Didactic Environment for Deep Reinforcement Learning. In: Nicosia, G., et al. Machine Learning, Optimization, and Data Science. LOD 2022. Lecture Notes in Computer Science, vol 13810. Springer, Cham. https://doi.org/10.1007/978-3-031-25599-1_18
Download citation
DOI: https://doi.org/10.1007/978-3-031-25599-1_18
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-25598-4
Online ISBN: 978-3-031-25599-1
eBook Packages: Computer ScienceComputer Science (R0)