Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

A Conceptual Framework for Production Process Parameter Optimization with Modular Hybrid Simulations

  • Conference paper
  • First Online:
Software Engineering and Formal Methods. SEFM 2022 Collocated Workshops (SEFM 2022)

Abstract

Optimizing the parameters of a manufacturing process is a time-consuming task requiring a series of experiments involving different parameter combinations. To alleviate this difficulty, we propose a conceptual framework for data-driven parameter optimization in production processes, which allows for virtual parameter tuning. To provide an insight into the practical application of our general method, we additionally explore its use on the example of lithium-ion battery (LIB) production. Our framework consists of two components: a modular hybrid simulation and an optimization tool. In the first component, the place of traditional process models is taken by a set of machine learning (ML) models which aim to imitate the behaviour of each process step. These individual models are trained on collected process data and connected in a modular simulation framework. While the resulting system already allows for manual exploration of parameter combinations, the introduction of an optimization tool unlocks further benefits. The proposed modular approach is independent of the production process type, therefore it can be applied to various manufacturing fields.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bohn, B., et al.: Analysis of car crash simulation data with nonlinear machine learning methods. Procedia Comput. Sci. 18, 621–630 (2013)

    Article  Google Scholar 

  2. Bontempi, G., Ben Taieb, S., Le Borgne, Y.-A.: Machine learning strategies for time series forecasting. In: Aufaure, M.-A., Zimányi, E. (eds.) eBISS 2012. LNBIP, vol. 138, pp. 62–77. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-36318-4_3

    Chapter  Google Scholar 

  3. Cunha, R.P., Lombardo, T., Primo, E.N., Franco, A.A.: Artificial intelligence investigation of NMC cathode manufacturing parameters interdependencies. Batteries Supercaps 3(1), 60–67 (2020)

    Article  Google Scholar 

  4. Fuchs, T., Enslin, C., Samsonov, V., Lütticke, D., Schmitt, R.H.: ProdSim: an open-source python package for generating high-resolution synthetic manufacturing data on product, machine and shop-floor levels. Procedia CIRP 107, 1343–1348 (2022)

    Article  Google Scholar 

  5. Gaspari, L., Colucci, L., Butzer, S., Colledani, M., Steinhilper, R.: Modularization in material flow simulation for managing production releases in remanufacturing. J. Remanuf. 7(2–3), 139–157 (2017)

    Article  Google Scholar 

  6. Goodall, P., Sharpe, R., West, A.: A data-driven simulation to support remanufacturing operations. Comput. Ind. 105, 48–60 (2019)

    Article  Google Scholar 

  7. Krenczyk, D.: Automatic generation method of simulation model for production planning and simulation systems integration. Adv. Mater. Res. 1036, 825–829 (2014)

    Article  Google Scholar 

  8. Kwade, A., Haselrieder, W., Leithoff, R., Modlinger, A., Dietrich, F., Droeder, K.: Current status and challenges for automotive battery production technologies. Nat. Energy 3(4), 290–300 (2018)

    Article  Google Scholar 

  9. Liu, K., Hu, X., Zhou, H., Tong, L., Widanage, W.D., Marco, J.: Feature analyses and modeling of lithium-ion battery manufacturing based on random forest classification. IEEE/ASME Trans. Mechatron. 26(6), 2944–2955 (2021)

    Article  Google Scholar 

  10. Liu, Y., Zhang, R., Wang, J., Wang, Y.: Current and future lithium-ion battery manufacturing. iScience 24(4), 102332 (2021)

    Google Scholar 

  11. Lv, C., et al.: Machine learning: an advanced platform for materials development and state prediction in lithium-ion batteries. Adv. Mater. (Deerfield Beach Fla.) 34, e2101474 (2021)

    Google Scholar 

  12. Mukkamala, P.S., Smith, J.S., Valenzuela, J.F.: Designing reusable simulation modules for electronics manufacturing systems. In: 2003 Proceedings of the 2003 Winter Simulation Conference, vol. 2, pp. 1281–1289 (2003)

    Google Scholar 

  13. von Rueden, L., Mayer, S., Sifa, R., Bauckhage, C., Garcke, J.: Combining machine learning and simulation to a hybrid modelling approach: current and future directions. In: Berthold, M.R., Feelders, A., Krempl, G. (eds.) IDA 2020. LNCS, vol. 12080, pp. 548–560. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-44584-3_43

    Chapter  Google Scholar 

  14. Teichert, G.H., Das, S., Aykol, M., Gopal, C.B., Gavini, V., Garikipati, K.C.: LixCoO2 phase stability studied by machine learning-enabled scale bridging between electronic structure, statistical mechanics and phase field theories. ArXiv (2021)

    Google Scholar 

  15. Vidal, C., Malysz, P., Kollmeyer, P., Emadi, A.: Machine learning applied to electrified vehicle battery state of charge and state of health estimation: State-of-the-art. IEEE Access 8, 52796–52814 (2020)

    Article  Google Scholar 

  16. Wang, J., Chang, Q., Xiao, G., Wang, N., Li, S.: Data driven production modeling and simulation of complex automobile general assembly plant. Comput. Ind. 62(7), 765–775 (2011)

    Article  Google Scholar 

  17. Wuest, T., Weimer, D., Irgens, C., Thoben, K.D.: Machine learning in manufacturing: advantages, challenges, and applications. Prod. Manuf. Res. 4(1), 23–45 (2016)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sylwia Olbrych .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Olbrych, S., Kemmerling, M., Zhou, H.A., Lütticke, D., Schmitt, R.H. (2023). A Conceptual Framework for Production Process Parameter Optimization with Modular Hybrid Simulations. In: Masci, P., Bernardeschi, C., Graziani, P., Koddenbrock, M., Palmieri, M. (eds) Software Engineering and Formal Methods. SEFM 2022 Collocated Workshops. SEFM 2022. Lecture Notes in Computer Science, vol 13765. Springer, Cham. https://doi.org/10.1007/978-3-031-26236-4_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-26236-4_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-26235-7

  • Online ISBN: 978-3-031-26236-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics