Abstract
Optimizing the parameters of a manufacturing process is a time-consuming task requiring a series of experiments involving different parameter combinations. To alleviate this difficulty, we propose a conceptual framework for data-driven parameter optimization in production processes, which allows for virtual parameter tuning. To provide an insight into the practical application of our general method, we additionally explore its use on the example of lithium-ion battery (LIB) production. Our framework consists of two components: a modular hybrid simulation and an optimization tool. In the first component, the place of traditional process models is taken by a set of machine learning (ML) models which aim to imitate the behaviour of each process step. These individual models are trained on collected process data and connected in a modular simulation framework. While the resulting system already allows for manual exploration of parameter combinations, the introduction of an optimization tool unlocks further benefits. The proposed modular approach is independent of the production process type, therefore it can be applied to various manufacturing fields.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Bohn, B., et al.: Analysis of car crash simulation data with nonlinear machine learning methods. Procedia Comput. Sci. 18, 621–630 (2013)
Bontempi, G., Ben Taieb, S., Le Borgne, Y.-A.: Machine learning strategies for time series forecasting. In: Aufaure, M.-A., Zimányi, E. (eds.) eBISS 2012. LNBIP, vol. 138, pp. 62–77. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-36318-4_3
Cunha, R.P., Lombardo, T., Primo, E.N., Franco, A.A.: Artificial intelligence investigation of NMC cathode manufacturing parameters interdependencies. Batteries Supercaps 3(1), 60–67 (2020)
Fuchs, T., Enslin, C., Samsonov, V., Lütticke, D., Schmitt, R.H.: ProdSim: an open-source python package for generating high-resolution synthetic manufacturing data on product, machine and shop-floor levels. Procedia CIRP 107, 1343–1348 (2022)
Gaspari, L., Colucci, L., Butzer, S., Colledani, M., Steinhilper, R.: Modularization in material flow simulation for managing production releases in remanufacturing. J. Remanuf. 7(2–3), 139–157 (2017)
Goodall, P., Sharpe, R., West, A.: A data-driven simulation to support remanufacturing operations. Comput. Ind. 105, 48–60 (2019)
Krenczyk, D.: Automatic generation method of simulation model for production planning and simulation systems integration. Adv. Mater. Res. 1036, 825–829 (2014)
Kwade, A., Haselrieder, W., Leithoff, R., Modlinger, A., Dietrich, F., Droeder, K.: Current status and challenges for automotive battery production technologies. Nat. Energy 3(4), 290–300 (2018)
Liu, K., Hu, X., Zhou, H., Tong, L., Widanage, W.D., Marco, J.: Feature analyses and modeling of lithium-ion battery manufacturing based on random forest classification. IEEE/ASME Trans. Mechatron. 26(6), 2944–2955 (2021)
Liu, Y., Zhang, R., Wang, J., Wang, Y.: Current and future lithium-ion battery manufacturing. iScience 24(4), 102332 (2021)
Lv, C., et al.: Machine learning: an advanced platform for materials development and state prediction in lithium-ion batteries. Adv. Mater. (Deerfield Beach Fla.) 34, e2101474 (2021)
Mukkamala, P.S., Smith, J.S., Valenzuela, J.F.: Designing reusable simulation modules for electronics manufacturing systems. In: 2003 Proceedings of the 2003 Winter Simulation Conference, vol. 2, pp. 1281–1289 (2003)
von Rueden, L., Mayer, S., Sifa, R., Bauckhage, C., Garcke, J.: Combining machine learning and simulation to a hybrid modelling approach: current and future directions. In: Berthold, M.R., Feelders, A., Krempl, G. (eds.) IDA 2020. LNCS, vol. 12080, pp. 548–560. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-44584-3_43
Teichert, G.H., Das, S., Aykol, M., Gopal, C.B., Gavini, V., Garikipati, K.C.: LixCoO2 phase stability studied by machine learning-enabled scale bridging between electronic structure, statistical mechanics and phase field theories. ArXiv (2021)
Vidal, C., Malysz, P., Kollmeyer, P., Emadi, A.: Machine learning applied to electrified vehicle battery state of charge and state of health estimation: State-of-the-art. IEEE Access 8, 52796–52814 (2020)
Wang, J., Chang, Q., Xiao, G., Wang, N., Li, S.: Data driven production modeling and simulation of complex automobile general assembly plant. Comput. Ind. 62(7), 765–775 (2011)
Wuest, T., Weimer, D., Irgens, C., Thoben, K.D.: Machine learning in manufacturing: advantages, challenges, and applications. Prod. Manuf. Res. 4(1), 23–45 (2016)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Olbrych, S., Kemmerling, M., Zhou, H.A., Lütticke, D., Schmitt, R.H. (2023). A Conceptual Framework for Production Process Parameter Optimization with Modular Hybrid Simulations. In: Masci, P., Bernardeschi, C., Graziani, P., Koddenbrock, M., Palmieri, M. (eds) Software Engineering and Formal Methods. SEFM 2022 Collocated Workshops. SEFM 2022. Lecture Notes in Computer Science, vol 13765. Springer, Cham. https://doi.org/10.1007/978-3-031-26236-4_2
Download citation
DOI: https://doi.org/10.1007/978-3-031-26236-4_2
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-26235-7
Online ISBN: 978-3-031-26236-4
eBook Packages: Computer ScienceComputer Science (R0)