Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Evaluating Zero-Cost Active Learning for Object Detection

  • Conference paper
  • First Online:
Software Engineering and Formal Methods. SEFM 2022 Collocated Workshops (SEFM 2022)

Abstract

Object detection requires substantial labeling effort for learning robust models. Active learning can reduce this effort by intelligently selecting relevant examples to be annotated. However, selecting these examples properly without introducing a sampling bias with a negative impact on the generalization performance is not straightforward and most active learning techniques can not hold their promises on real-world benchmarks. In our evaluation paper, we focus on active learning techniques without a computational overhead besides inference, something we refer to as zero-cost active learning. In particular, we show that a key ingredient is not only the score on a bounding box level but also the technique used for aggregating the scores for ranking images. We outline our experimental setup and also discuss practical considerations when using active learning for object detection.

Supported by Investitionsbank Berlin, Germany and computational resources of the BMBF grant programme “KI-Nachwuchs@FH”.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Adhikari, B., Peltomäki, J., Germi, S.B., Rahtu, E., Huttunen, H.: Effect of label noise on robustness of deep neural network object detectors. In: Habli, I., Sujan, M., Gerasimou, S., Schoitsch, E., Bitsch, F. (eds.) SAFECOMP 2021. LNCS, vol. 12853, pp. 239–250. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-83906-2_19

    Chapter  Google Scholar 

  2. Agarwal, S., Arora, H., Anand, S., Arora, C.: Contextual diversity for active learning. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12361, pp. 137–153. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58517-4_9

    Chapter  Google Scholar 

  3. Alex Kendall, V.B., Cipolla, R.: Bayesian segnet: model uncertainty in deep convolutional encoder-decoder architectures for scene understanding. In: Proceedings of the British Machine Vision Conference (BMVC), pp. 57.1–57.12. BMVA Press (2017). https://doi.org/10.5244/C.31.57

  4. Brust, C.A., Käding, C., Denzler, J.: Active learning for deep object detection. In: Computer Vision Theory and Applications (VISAPP), pp. 181–190 (2019). https://doi.org/10.5220/0007248601810190

  5. Choi, J., Elezi, I., Lee, H.J., Farabet, C., Alvarez, J.M.: Active learning for deep object detection via probabilistic modeling. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), pp. 10264–10273 (2021)

    Google Scholar 

  6. Citovsky, G., et al.: Batch active learning at scale. Adv. Neural. Inf. Process. Syst. 34, 11933–11944 (2021)

    Google Scholar 

  7. Everingham, M., Eslami, S., Van Gool, L., Williams, C.K., Winn, J., Zisserman, A.: The pascal visual object classes challenge: a retrospective. Int. J. Comput. Vision 111(1), 98–136 (2015)

    Article  Google Scholar 

  8. Feng, Z., et al.: ALBench: a framework for evaluating active learning in object detection. arXiv preprint arXiv:2207.13339 (2022)

  9. Freeman, L.C.: Elementary Applied Statistics: For Students in Behavioral Science. Wiley, New York (1965)

    Google Scholar 

  10. Freytag, A., Rodner, E., Denzler, J.: Selecting influential examples: active learning with expected model output changes. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8692, pp. 562–577. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10593-2_37

    Chapter  Google Scholar 

  11. Gal, Y.: Uncertainty in deep learning. Ph.D. thesis, University of Cambridge (2016)

    Google Scholar 

  12. Joshi, A.J., Porikli, F., Papanikolopoulos, N.: Multi-class active learning for image classification. In: 2009 IEEE Conference on Computer Vision and Pattern Recognition, pp. 2372–2379. IEEE (2009)

    Google Scholar 

  13. LeCun, Y., Bengio, Y., et al.: Convolutional networks for images, speech, and time series. Handb. Brain Theory Neural Netw. 3361(10), 1995 (1995)

    Google Scholar 

  14. Lewis, D.D., Catlett, J.: Heterogeneous uncertainty sampling for supervised learning. In: Machine Learning Proceedings 1994, pp. 148–156. Elsevier (1994)

    Google Scholar 

  15. Lewis, D.D., Gale, W.A.: A sequential algorithm for training text classifiers. In: Croft, B.W., van Rijsbergen, C.J. (eds.) SIGIR 1994, pp. 3–12. Springer, London (1994). https://doi.org/10.1007/978-1-4471-2099-5_1

    Chapter  Google Scholar 

  16. Lin, T.-Y., et al.: Microsoft COCO: common objects in context. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8693, pp. 740–755. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10602-1_48

    Chapter  Google Scholar 

  17. Reiß, S., Seibold, C., Freytag, A., Rodner, E., Stiefelhagen, R.: Every annotation counts: multi-label deep supervision for medical image segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 9532–9542 (2021)

    Google Scholar 

  18. Ren, S., He, K., Girshick, R., Sun, J.: Faster R-CNN: towards real-time object detection with region proposal networks. Adv. Neural Inf. Process. Syst. 28 (2015)

    Google Scholar 

  19. Rodner, E., Denzler, J.: One-shot learning of object categories using dependent Gaussian processes. In: Goesele, M., Roth, S., Kuijper, A., Schiele, B., Schindler, K. (eds.) DAGM 2010. LNCS, vol. 6376, pp. 232–241. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15986-2_24

    Chapter  Google Scholar 

  20. Rodner, E., Hoffman, J., Donahue, J., Darrell, T., Saenko, K.: Towards adapting imagenet to reality: scalable domain adaptation with implicit low-rank transformations. arXiv preprint arXiv:1308.4200 (2013)

  21. Roth, D., Small, K.: Margin-based active learning for structured output spaces. In: Fürnkranz, J., Scheffer, T., Spiliopoulou, M. (eds.) ECML 2006. LNCS (LNAI), vol. 4212, pp. 413–424. Springer, Heidelberg (2006). https://doi.org/10.1007/11871842_40

    Chapter  Google Scholar 

  22. Roy, S., Unmesh, A., Namboodiri, V.P.: Deep active learning for object detection. In: Proceedings of the British Machine Vision Conference (BMVC), p. 91 (2018)

    Google Scholar 

  23. Sener, O., Savarese, S.: Active learning for convolutional neural networks: a core-set approach. In: International Conference on Learning Representations (ICLR) (2017)

    Google Scholar 

  24. Wu, Y., Kirillov, A., Massa, F., Lo, W.Y., Girshick, R.: Detectron2 (2019). https://github.com/facebookresearch/detectron2

  25. Yu, W., Zhu, S., Yang, T., Chen, C.: Consistency-based active learning for object detection. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3951–3960 (2022)

    Google Scholar 

  26. Yuan, T., et al.: Multiple instance active learning for object detection. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 5330–5339 (2021)

    Google Scholar 

  27. Zhdanov, F.: Diverse mini-batch active learning. arXiv preprint arXiv:1901.05954 (2019)

  28. Zheng, M., You, S., Huang, L., Wang, F., Qian, C., Xu, C.: SimMatch: semi-supervised learning with similarity matching. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 14471–14481 (2022)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erik Rodner .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Probst, D., Raza, H., Rodner, E. (2023). Evaluating Zero-Cost Active Learning for Object Detection. In: Masci, P., Bernardeschi, C., Graziani, P., Koddenbrock, M., Palmieri, M. (eds) Software Engineering and Formal Methods. SEFM 2022 Collocated Workshops. SEFM 2022. Lecture Notes in Computer Science, vol 13765. Springer, Cham. https://doi.org/10.1007/978-3-031-26236-4_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-26236-4_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-26235-7

  • Online ISBN: 978-3-031-26236-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics