Abstract
Collections of time series can be grouped over time both globally, over their whole time span, as well as locally, over several common time ranges, depending on the similarity patterns they share. In addition, local groupings can be persistent over time, defining associations of local groupings. In this paper, we introduce Z-Grouping, a novel framework for finding local groupings and their associations. Our solution converts time series to a set of event label channels by applying a temporal abstraction function and finds local groupings of maximized time span and time series instance members. A grouping-instance matrix structure is also exploited to detect associations of contiguous local groupings sharing common member instances. Finally, the validity of each local grouping is assessed against predefined global groupings. We demonstrate the ability of Z-Grouping to find local groupings without size constraints on time ranges on a synthetic dataset, three real-world datasets, and 128 UCR datasets, against four competitors.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Z-Grouping repository. www.github.com/zedshape/zgrouping/
Aghabozorgi, S., Shirkhorshidi, A.S., Wah, T.Y.: Time-series clustering-a decade review. ISJ 53, 16–38 (2015)
Aghabozorgi, S., Wah, T.Y.: Clustering of large time series datasets. IDA 18(5), 793–817 (2014)
Alaee, S., Mercer, R., Kamgar, K., Keogh, E.: Time series motifs discovery under dtw allows more robust discovery of conserved structure. DAMI 35(3), 863–910 (2021)
Cheng, Y., Church, G.: Biclustering of expression data. ISMB 8, 93–103 (2000)
Cuturi, M., Blondel, M.: Soft-dtw: a differentiable loss function for time-series. In: ICML, pp. 894–903. PMLR (2017)
Dau, H.A., et al.: The ucr time series archive. JAS 6(6), 1293–1305 (2019)
Gionis, A., Mannila, H., Terzi, E.: Clustered segmentations. In: TDM. Citeseer (2004)
Henelius, A., Karlsson, I., Papapetrou, P., Ukkonen, A., Puolamäki, K.: Semigeometric tiling of event sequences. In: Frasconi, P., Landwehr, N., Manco, G., Vreeken, J. (eds.) ECML PKDD 2016. LNCS (LNAI), vol. 9851, pp. 329–344. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46128-1_21
Huang, C.F.: A hybrid stock selection model using genetic algorithms and support vector regression. Appl. Soft Comput. 12(2), 807–818 (2012)
Jiang, Y., Liu, Y., Wang, H., Shang, J., Ding, S.: Online pricing with bundling and coupon discounts. IJPR 56(5), 1773–1788 (2018)
Lee, J.H., Lee, Y.R., Jun, C.H.: A biclustering method for time series analysis. IEMS 9(2), 131–140 (2010)
Li, H., Liu, J., Yang, Z., Liu, R.W., Wu, K., Wan, Y.: Adaptively constrained dynamic time warping for time series classification and clustering. Inf. Sci. 534, 97–116 (2020)
Lin, J., Keogh, E., Wei, L., Lonardi, S.: Experiencing sax: a novel symbolic representation of time series. DMKD 15(2), 107–144 (2007)
Luo, L., Lv, S.: An accelerated u-shapelet time series clustering method with lsh. In: Journal of Phys. Conference Series, vol. 1631, pp. 12–77. IOP (2020)
Mueen, A., Hamooni, H., Estrada, T.: Time series join on subsequence correlation. In: ICDM, pp. 450–459. IEEE (2014)
Mueen, A., Nath, S., Liu, J.: Fast approximate correlation for massive time-series data. In: SIGMOD, pp. 171–182 (2010)
Raza, A., Kramer, S.: Accelerating pattern-based time series classification: a linear time and space string mining approach. KAIS 62(3), 1113–1141 (2020)
Ruta, N., Sawada, N., McKeough, K., Behrisch, M., Beyer, J.: Sax navigator: Time series exploration through hierarchical clustering. In: VIS, pp. 236–240 (2019)
Schäfer, P.: The boss is concerned with time series classification in the presence of noise. DAMI 29(6), 1505–1530 (2015)
Wu, J., Wang, Y., Wang, P., Pei, J., Wang, W.: Finding maximal significant linear representation between long time series. In: ICDM, pp. 1320–1325. IEEE (2018)
Zolhavarieh, S., Aghabozorgi, S., Teh, Y.W.: A review of subsequence time series clustering. The Scientific World Journal 2014 (2014)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
1 Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Lee, Z., Trincavelli, M., Papapetrou, P. (2023). Finding Local Groupings of Time Series. In: Amini, MR., Canu, S., Fischer, A., Guns, T., Kralj Novak, P., Tsoumakas, G. (eds) Machine Learning and Knowledge Discovery in Databases. ECML PKDD 2022. Lecture Notes in Computer Science(), vol 13718. Springer, Cham. https://doi.org/10.1007/978-3-031-26422-1_5
Download citation
DOI: https://doi.org/10.1007/978-3-031-26422-1_5
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-26421-4
Online ISBN: 978-3-031-26422-1
eBook Packages: Computer ScienceComputer Science (R0)