Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

An Emergency Information Broadcast Routing in VANET

  • Conference paper
  • First Online:
Wireless Internet (WiCON 2022)

Abstract

Aiming at the problem that the low efficiency of information transmission caused by the high speed of vehicle and the unstable network topology in the vehicle ad hoc network (VANET), an emergency information broadcast (EIBR) routing in VANET was proposed in this paper. The routing scheme decreases the number of nodes to broadcast packets. A connected dominating set (CDS) is created for the certain road section. Then the CDS is optimized with the approximation method to obtain the minimum connected dominating set (MCDS). The next hop relay node will be selected from the MCDS. In addition, these nodes broadcast the packets by a dynamic probabilistic broadcast strategy. It can enormously lessen the number of broadcast nodes and the transmission collisions, it also can reduce the end-to-end delay consequently. Simulation results have shown the effectiveness of our broadcast routing as compared to the two traditional broadcast protocols NCPR and DMB in the two aspects of the average transmission delay and packet delivery ratio.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 64.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 84.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Kaur, R., Singh, T.P., Khajuria, V.: Security issues in vehicular ad-hoc network (VANET). In: 2018 2nd International Conference on Trends in Electronics and Informatics (ICOEI), Tirunelveli, India, pp. 884–889. IEEE (2018)

    Google Scholar 

  2. Zhou, M., Wu, M., Ding, Z., Liu, Z., Zhao, F.: performance evaluation of hybrid distributed-centralized TDMA in high-density vehicular networks. IEEE Commun. Lett. 26(4), 952–956 (2022)

    Google Scholar 

  3. Singh, P.K., Agarwal, A., Nakum, G., Rawat, D.B., Nandi, S.: MPFSLP: masqueraded probabilistic flooding for source-location privacy in VANETs. IEEE Trans. Veh. Technol. 69(10), 11383–11393 (2020)

    Google Scholar 

  4. Zeng, X., Yu, M., Wang, D.: A new probabilistic multi-hop broadcast protocol for vehicular networks. IEEE Trans. Veh. Technol. 67(12), 12165–12176 (2018)

    Google Scholar 

  5. Chou, Y., Chu, T.-H., Kuo, S.-Yu., Chen, C.-Y.: An adaptive emergency broadcast strategy for vehicular ad hoc networks. IEEE Sens. J. 18(12), 4814–4821 (2018)

    Google Scholar 

  6. Dong, W., Lin, F., Zhang, H., Yin, Y.: A cluster-based recursive broadcast routing algorithm to propagate emergency messages in city VANETs. In: IEEE 9th International Conference on Communication Software and Networks (ICCSN), Guangzhou, China, pp. 187–190. IEEE (2017)

    Google Scholar 

  7. Virdaus, I.K., Kang, M., Shin, S., Kwon, G.-R.: A simulation study: is the broadcast storming really harmful for emergency delivery in VANETs?. In: Proceedings of International Conference on Advanced Technologies for Communication (ATC), Ho Chi Minh City, Vietnam, pp. 666–670. IEEE (2015)

    Google Scholar 

  8. Li, P., Zeng, Y., Li, C., Chen, L., Wang, H., Chen, C.: A probabilistic broadcasting scheme for emergent message dissemination in Urban internet of vehicles. IEEE Access 9, 113187–113198 (2021)

    Google Scholar 

  9. Wu, J., Luo, C., Luo Y., Li, K.: Distributed UAV swarm formation and collision avoidance strategies over fixed and switching topologies. IEEE Trans. Cybern. 1–11 (2021)

    Google Scholar 

  10. Han, R., Shi, J., Guan, Q., Banoori, F., Shen, W.: Speed and position aware dynamic routing for emergency message dissemination in VANETs. IEEE Access 10, 1376–1385 (2022)

    Google Scholar 

  11. Liu, Z., et al.: PPTM: a privacy-preserving trust management scheme for emergency message dissemination in space–air–ground-integrated vehicular networks. IEEE Internet Things J. 9(8), 5943–5956 (2022)

    Google Scholar 

  12. Fayyad, O.B., Mangoud, M.A.: Multi-hop broadcast protocol based on smart fuzzy inference for vehicular ad-hoc network. In: 3rd Smart Cities Symposium (SCS 2020), IET, online (2020)

    Google Scholar 

  13. Luo, Y., Su, X., Yu, Y., Cao, Q., Ni, Z.: Real-time successful broadcasting ratio and distance based broadcast for vehicular ad hoc networks. In: 2020 International Conference on Wireless Communications and Signal Processing (WCSP), Nanjing, China, pp. 1046–1051. IEEE (2020)

    Google Scholar 

  14. Arsalan, A., Rehman, R.A.: Distance-based scheme for broadcast storm mitigation in named software defined vehicular networks (NSDVN). In: 2019 16th IEEE Annual Consumer Communications and Networking Conference (CCNC). Las Vegas, NV, USA, pp. 1–4. IEEE (2019)

    Google Scholar 

  15. Zhang, H., Zhang, X.: An adaptive control structure based fast broadcast protocol for vehicular ad hoc networks. IEEE Commun. Lett. 21(8), 1835–1838 (2017)

    Google Scholar 

  16. Borgonovo, F., Capone, A., Cesana, M., Fratta, L.: ADHOC MAC: a new, flexible and reliable MAC architecture for ad-hoc networks. In: Proceedings of the IEEE Wireless Communications and Networking. New York, USA, pp. 965–970. IEEE (2003)

    Google Scholar 

  17. Marathe, M.V., Breu, H., Hunt, H.B., Ravi, S.S., Rosenkrantz, D.J.: Simple heuristics for unit disk graphs. J. Netw. 25(2), 59–68 (1995)

    Google Scholar 

  18. Garey, M.R., Johnson, D.S.: Computers and intractability-a guide to the theory of NP-completeness. SIAM Rev. 24(1), 90–91 (1979)

    Google Scholar 

  19. Gao W.: Novel connected dominating set algorithm based on minimum spanning tree. J. Comput. Appl. 29(6), 1489–1493 (2009)

    Google Scholar 

  20. Xue, F., Kumar, P.R.: The number of neighbors needed for connectivity of wireless networks. wireless networks. 10(2), 169–181 (2004)

    Google Scholar 

  21. Abdulai, J.D., Ould-Khaoua, M., Mackenzie, L.M., Mohammed, A.: Neighbour coverage: a dynamic probabilistic route discovery for mobile ad hoc networks. In: 2008 International Symposium on Performance Evaluation of Computer and Telecommunication Systems (SPECTS). Edinburgh, UK, pp. 165–172. IEEE (2008)

    Google Scholar 

  22. Briesemeister, L., Hommel, G.: Role-based multicast in highly mobile but sparsely connected ad hoc networks. In: 2000 First Annual Workshop on Mobile and Ad Hoc Networking and Computing, Boston, MA, USA, pp. 45–50. IEEE (2000)

    Google Scholar 

  23. Fasolo, E., Zanella, A., Zorzi, M.: An effective broadcast scheme for alert message propagation in vehicular ad hoc networks. In: 2006 IEEE International Conference on Communications, Istanbul, Turkey, pp. 3960–3965. IEEE (2006)

    Google Scholar 

Download references

Acknowledgement

This work was supported by the NSF(No.1907472), National Science Foundation of China(No.62062045), Science and technology project of Jiangxi Provincial Department of Education (No. GJJ211842), Jiangxi Natural Science Foundation (No. 20202BAB202023,20192ACBL20031), Project of Teaching Reform in Jiujiang University(No. XJJGYB-19–47).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mingzhu Ge .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Xu, L., Ge, M., Deng, A., Shi, J., Yao, S. (2023). An Emergency Information Broadcast Routing in VANET. In: Haas, Z.J., Prakash, R., Ammari, H., Wu, W. (eds) Wireless Internet. WiCON 2022. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 464. Springer, Cham. https://doi.org/10.1007/978-3-031-27041-3_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-27041-3_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-27040-6

  • Online ISBN: 978-3-031-27041-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics