Abstract
Playlists are a major way of interacting with music, as evidenced by the fact that streaming services currently host billions of playlists. In this content overload scenario, it is crucial to automatically characterise playlists, so that music can be effectively organised, accessed and retrieved. One way to characterise playlists is by their listening context. For example, one listening context is “workout”, which characterises playlists suited to be listened to by users while working out. Recent work attempts to predict the listening contexts of playlists, formulating the problem as multi-label classification. However, current classifiers for listening context prediction are limited in the input data modalities that they handle, and on how they leverage the inputs for classification. As a result, they achieve only modest performance. In this work, we propose to use knowledge graphs to handle multi-modal inputs, and to effectively leverage such inputs for classification. We formulate four novel classifiers which yield approximately 10% higher performance than the state-of-the-art. Our work is a step forward in predicting the listening contexts of playlists, which could power important real-world applications, such as context-aware music recommender systems and playlist retrieval systems.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
- 2.
- 3.
- 4.
- 5.
Our formulation of MAP is different from others, which allow for multiple relevant items. In our case, there is only one relevant item: the correct listening context.
References
Aucouturier, J.J., Pachet, F., et al.: Music similarity measures: What’s the use? In: 3rd International Society for Music Information Retrieval Conference, pp. 13–17 (2002)
Baltrušaitis, T., Ahuja, C., Morency, L.P.: Multimodal machine learning: a survey and taxonomy. IEEE Trans. Pattern Anal. Mach. Intell. 41(2), 423–443 (2018)
Bertin-Mahieux, T., Ellis, D.P., LabROSA, E., Whitman, B., Lamere, P.: The million song dataset. In: Proceedings of the 12th International Conference on Music Information Retrieval (2011)
Bogdanov, D., Won, M., Tovstogan, P., Porter, A., Serra, X.: The MTG-Jamendo dataset for automatic music tagging. In: Machine Learning for Music Discovery Workshop, International Conference on Machine Learning (ICML 2019). Long Beach, CA, United States (2019). http://hdl.handle.net/10230/42015
Bonnin, G., Jannach, D.: Automated generation of music playlists: survey and experiments. ACM Comput. Surv. (CSUR) 47(2), 1–35 (2014)
Chen, C.W., Lamere, P., Schedl, M., Zamani, H.: RecSys challenge 2018: Automatic music playlist continuation. In: Proceedings of the 12th ACM Conference on Recommender Systems, pp. 527–528. RecSys 2018, Association for Computing Machinery, New York, NY, USA (2018). https://doi.org/10.1145/3240323.3240342
Chen, M., Zheng, A., Weinberger, K.: Fast image tagging. In: International Conference on Machine Learning, pp. 1274–1282. PMLR (2013)
Choi, J., Khlif, A., Epure, E.: Prediction of user listening contexts for music playlists. In: Proceedings of the 1st Workshop on NLP for Music and Audio (NLP4MusA), pp. 23–27 (2020)
Choi, K., Fazekas, G., McFee, B., Cho, K., Sandler, M.: Towards music captioning: generating music playlist descriptions. arXiv preprint arXiv:1608.04868 (2016)
Choi, K., Fazekas, G., Sandler, M., Cho, K.: Convolutional recurrent neural networks for music classification. In: 2017 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 2392–2396. IEEE (2017)
Cunningham, S.J., Bainbridge, D., Falconer, A.: ‘More of an art than a science’: supporting the creation of playlists and mixes. In: 7th International Society for Music Information Retrieval Conference (2006)
Dai, Y., Wang, S., Xiong, N.N., Guo, W.: A survey on knowledge graph embedding: approaches, applications and benchmarks. Electronics 9(5), 750 (2020)
Dror, R., Baumer, G., Shlomov, S., Reichart, R.: The hitchhiker’s guide to testing statistical significance in natural language processing. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 1383–1392. Association for Computational Linguistics, Melbourne, Australia (2018). https://doi.org/10.18653/v1/P18-1128. https://aclanthology.org/P18-1128
Ferraro, A., et al.: Melon playlist dataset: a public dataset for audio-based playlist generation and music tagging. In: ICASSP 2021–2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 536–540. IEEE (2021)
Flexer, A.: On inter-rater agreement in audio music similarity. In: Proceedings of the 15th International Conference on Music Information Retrieval, pp. 245–250 (2014)
Golder, S.A., Huberman, B.A.: The structure of collaborative tagging systems. J. Inf. Sci. 32(2), 0508082 (2006)
Greasley, A.E., Lamont, A.: Exploring engagement with music in everyday life using experience sampling methodology. Music Sci. 15(1), 45–71 (2011)
Hu, Y., Koren, Y., Volinsky, C.: Collaborative filtering for implicit feedback datasets. In: 2008 Eighth IEEE International Conference on Data Mining, pp. 263–272. IEEE (2008)
Ibrahim, K., Epure, E., Peeters, G., Richard, G.: Should we consider the users in contextual music auto-tagging models? In: 21st International Society for Music Information Retrieval Conference (2020)
Ibrahim, K.M., Royo-Letelier, J., Epure, E.V., Peeters, G., Richard, G.: Audio-based auto-tagging with contextual tags for music. In: ICASSP 2020–2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 16–20. IEEE (2020)
Kamehkhosh, I., Bonnin, G., Jannach, D.: Effects of recommendations on the playlist creation behavior of users. User Model. User-Adap. Inter. 30(2), 285–322 (2020)
Knees, P., Schedl, M.: Contextual music meta-data: comparison and sources. In: Music Similarity and Retrieval. TIRS, vol. 36, pp. 107–132. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49722-7_5
Koehn, P.: Statistical significance tests for machine translation evaluation. In: Proceedings of the 2004 Conference on Empirical Methods in Natural Language Processing, pp. 388–395. Association for Computational Linguistics, Barcelona, Spain (2004). https://aclanthology.org/W04-3250
Law, E., West, K., Mandel, M.I., Bay, M., Downie, J.S.: Evaluation of algorithms using games: The case of music tagging. In: 10th International Society for Music Information Retrieval Conference, pp. 387–392 (2009)
Lee, S., Masoud, M., Balaji, J., Belkasim, S., Sunderraman, R., Moon, S.J.: A survey of tag-based information retrieval. Int. J. Multimedia Inf. Retrieval 6(2), 99–113 (2017)
Lin, Y.H., Chung, C.H., Chen, H.H.: Playlist-based tag propagation for improving music auto-tagging. In: 2018 26th European Signal Processing Conference (EUSIPCO), pp. 2270–2274. IEEE (2018)
Muligan, M.: Announcing MIDiA’s state of the streaming nation 2 report. https://midiaresearch.com/blog/announcing-midias-state-of-the-streaming-nation-2-report (2017). Accessed 15 Mar 2022
Oramas, S., Ostuni, V.C., Noia, T.D., Serra, X., Sciascio, E.D.: Sound and music recommendation with knowledge graphs. ACM Trans. Intell. Syst. Technol. (TIST) 8(2), 1–21 (2016)
Pons, J., Nieto, O., Prockup, M., Schmidt, E., Ehmann, A., Serra, X.: End-to-end learning for music audio tagging at scale. In: Proceedings of the 19th International Conference on Music Information Retrieval (2018)
Schedl, M., Flexer, A., Urbano, J.: The neglected user in music information retrieval research. J. Intell. Inf. Syst. 41(3), 523–539 (2013)
Schedl, M., Zamani, H., Chen, C.-W., Deldjoo, Y., Elahi, M.: Current challenges and visions in music recommender systems research. Int. J. Multimedia Inf. Retrieval 7(2), 95–116 (2018). https://doi.org/10.1007/s13735-018-0154-2
Victoria, A.H., Maragatham, G.: Automatic tuning of hyperparameters using Bayesian optimization. Evol. Syst. 12(1), 217–223 (2021)
Wang, X., Rosenblum, D., Wang, Y.: Context-aware mobile music recommendation for daily activities. In: Proceedings of the 20th ACM International Conference on Multimedia, pp. 99–108 (2012)
Wilcke, X., Bloem, P., De Boer, V.: The knowledge graph as the default data model for learning on heterogeneous knowledge. Data Sci. 1(1–2), 39–57 (2017)
Won, M., Chun, S., Nieto, O., Serra, X.: Data-driven harmonic filters for audio representation learning. In: Proceedings of International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 536–540. IEEE (2020)
Won, M., Ferraro, A., Bogdanov, D., Serra, X.: Evaluation of CNN-based automatic music tagging models. arXiv preprint arXiv:2006.00751 (2020)
Acknowledgements
This publication has emanated from research conducted with the financial support of Science Foundation Ireland under Grant number 12/RC/2289-P2 which is co-funded under the European Regional Development Fund. For the purpose of Open Access, the author has applied a CC BY public copyright licence to any Author Accepted Manuscript version arising from this submission. We are grateful to Elena Epure & Romain Hennequin from Deezer, for sharing the dataset we used in the experiments, and for assisting us in the process of replicating the baselines. We are also grateful to Jeong Choi from NAVER, for assisting us in the process of replicating the baselines.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Gabbolini, G., Bridge, D. (2023). Predicting the Listening Contexts of Music Playlists Using Knowledge Graphs. In: Kamps, J., et al. Advances in Information Retrieval. ECIR 2023. Lecture Notes in Computer Science, vol 13980. Springer, Cham. https://doi.org/10.1007/978-3-031-28244-7_21
Download citation
DOI: https://doi.org/10.1007/978-3-031-28244-7_21
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-28243-0
Online ISBN: 978-3-031-28244-7
eBook Packages: Computer ScienceComputer Science (R0)