Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

GDLS-FS: Scaling Feature Selection for Intrusion Detection with GRASP-FS and Distributed Local Search

  • Conference paper
  • First Online:
Advanced Information Networking and Applications (AINA 2023)

Abstract

This paper presents a scalable microservice-oriented architecture, called Distributed LS (DLS), for enhancing the Local Search (LS) phase in the Greedy Randomized Adaptive Search Procedure for Feature Selection (GRASP-FS) metaheuristic. We distribute the DLS processing among multiple microservices, each with a different responsibility. These microservices are decoupled because they communicate with each other by using a message broker through the publish and subscribe paradigm. As a proof-of-concept, we implemented an instance of our architecture through the Kafka framework, two neighborhood structures, and three LS algorithms. These components look for the best solution which is published in a topic to the Intrusion Detection System (IDS). Such a process is iterated continuously to improve the solution published, providing IDS with the best feature selection solution at the end of the search process with scalability and time reduction. Our results show that using RVND may take only 19.53% of the time taken by VND. Therefore, the RVND approach is the most efficient for exploiting parallelism in distributed architectures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Araujo, R.P., Coelho, I.M., Marzulo, L.A.J.: A multi-improvement local search using dataflow and GPU to solve the minimum latency problem. Parallel Comput. 98, 102661 (2020)

    Article  MathSciNet  Google Scholar 

  2. Bermejo, P., Gamez, J.A., Puerta, J.M.: Incremental wrapper-based subset selection with replacement: an advantageous alternative to sequential forward selection. In: 2009 IEEE Symposium on Computational Intelligence and Data Mining, pp. 367–374 (2009)

    Google Scholar 

  3. Borgiani, V., Moratori, P., Kazienko, J.F., Tubino, E.R.R., Quincozes, S.E.: Toward a distributed approach for detection and mitigation of denial-of-service attacks within industrial internet of things. IEEE Internet Things J. 8(6), 4569–4578 (2021)

    Article  Google Scholar 

  4. Cai, X., Schlotfeldt, B., Khosoussi, K., Atanasov, N., Pappas, G.J., How, J. P.: Non-monotone energy-aware information gathering for heterogeneous robot teams. In: 2021 IEEE International Conference on Robotics and Automation (ICRA). IEEE, pp. 8859–8865 (2021)

    Google Scholar 

  5. Carvalho, D., Quincozes, V.E., Quincozes, S.E., Kazienko, J.F., Santos, C.R.P.: BG-IDPS: Detecção e prevenção de intrusões em tempo real em switches eBPF com o filtro de pacotes berkeley e a metaheurística GRASP-FS. In XXII Simpósio Brasileiro em Segurança da Informação e de Sistemas Computacionais - SBSeg, SBC, pp. 139–152 (2022)

    Google Scholar 

  6. Cura, T.: Use of support vector machines with a parallel local search algorithm for data classification and feature selection. Expert Syst. Appl. 145, 113133 (2020)

    Article  Google Scholar 

  7. Hansen, P., Mladenović, N., Brimberg, J., Pérez, J.A.M.: Variable neighborhood search. In: Gendreau, M., Potvin, J.-Y. (eds.) Handbook of Metaheuristics. ISORMS, vol. 272, pp. 57–97. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-91086-4_3

    Chapter  Google Scholar 

  8. Holmes, G., Donkin, A., Witten, I.H.: Weka: a machine learning workbench. In: Australian New Zealnd Intelligent Information Systems Conference, pp. 357–361 (1994)

    Google Scholar 

  9. Liao, H.-J., Lin, C.-H.R., Lin, Y.-C., Tung, K.-Y.: Intrusion detection system: a comprehensive review. J. Netw. Comput. Appl. 36(1), 16–24 (2013)

    Article  Google Scholar 

  10. Mihoub, A., Fredj, O.B., Cheikhrouhou, O., Derhab, A., Krichen, M.: Denial of service attack detection and mitigation for internet of things using looking-back-enabled machine learning techniques. Computers Electr. Eng. 98, 107716 (2022)

    Article  Google Scholar 

  11. Moradkhani, M., Amiri, A., Javaherian, M., Safari, H.: A hybrid algorithm for feature subset selection in high-dimensional datasets using FICA and IWSSR algorithm. Appl. Soft Comput. 35, 123–135 (2015)

    Article  Google Scholar 

  12. Moshki, M., Kabiri, P., Mohebalhojeh, A.: Scalable feature selection in high-dimensional data based on GRASP. Appl. Artif. Intell. 29(3), 283–296 (2015)

    Article  Google Scholar 

  13. Nekkaa, M., Boughaci, D.: Hybrid harmony search combined with stochastic local search for feature selection. Neural Process. Lett. 44(1), 199–220 (2016)

    Article  Google Scholar 

  14. Parreño, F., Alvarez-Valdés, R., Oliveira, J.F., Tamarit, J.M.: A hybrid GRASP/VND algorithm for two-and three-dimensional bin packing. Ann. Oper. Res. 179(1), 203–220 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  15. Quincozes, S.: ERENO: An Extensible Tool for Generating Realistic IEC-61850 Intrusion Detection Datasets. Ph.D thesis, Fluminense Federal University (2022)

    Google Scholar 

  16. Quincozes, S.E., Albuquerque, C., Passos, D., Mossé, D.: A survey on intrusion detection and prevention systems in digital substations. Comput. Netw. 184, 107679 (2021)

    Article  Google Scholar 

  17. Quincozes, S.E., Mossé, D., Passos, D., Albuquerque, C., Ochi, L.S., dos Santos, V.F.: On the performance of grasp-based feature selection for cps intrusion detection. IEEE Trans. Netw. Serv. Manage. 19(1), 614–626 (2021)

    Article  Google Scholar 

  18. Quincozes, S.E., Passos, D., Albuquerque, C., Mossé, D., Ochi, L.S.: An extended assessment of metaheuristics-based feature selection for intrusion detection in CPS perception layer. Ann. Telecommun. 77, 1–15 (2022)

    Article  Google Scholar 

  19. Quincozes, S.E., Passos, D., Albuquerque, C., Ochi, L.S., Mossé, D.: Grasp-based feature selection for intrusion detection in CPS perception layer. In: 2020 4th Conference on cloud and internet of things (CIoT)IEEE, pp. 41–48 (2020)

    Google Scholar 

  20. Resende, M.G., Ribeiro, C.C.: GRASP: greedy randomized adaptive search procedures. In: Burke, E., Kendall, G. (eds.) Search Methodologies, pp. 287–312. Springer, Boston (2014). https://doi.org/10.1007/978-1-4614-6940-7_11

    Chapter  Google Scholar 

  21. Soares, A.A.Z., et al.: Enabling emulation and evaluation of IEC 61850 networks with TITAN. IEEE Access 9, 49788–49805 (2021)

    Article  Google Scholar 

  22. Subanya, B., Rajalaxmi, R.: Feature selection using artificial bee colony for cardiovascular disease classification. In: 2014 International Conference on Electronics and Communication Systems (ICECS). IEEE, pp. 1–6 (2014)

    Google Scholar 

  23. Subramanian, A., Drummond, L.M., Bentes, C., Ochi, L.S., Farias, R.: A parallel heuristic for the vehicle routing problem with simultaneous pickup and delivery. Comput. Oper. Res. 37(11), 1899–1911 (2010)

    Article  MATH  Google Scholar 

  24. Thein, K.M.M.: Apache kafka: next generation distributed messaging system. Int. J. Sci. Eng. Technol. Res. 3(47), 9478–9483 (2014)

    Google Scholar 

  25. Vander-Pallen, M.A., Addai, P., Isteefanos, S., Mohd, T.K.: Survey on types of cyber attacks on operating system vulnerabilities since 2018 onwards. In: 2022 IEEE World AI IoT Congress (AIIoT). IEEE, pp. 01–07 (2022)

    Google Scholar 

Download references

Acknowledgments

This work is financially supported by TQI Tecnologia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Silvio E. Quincozes .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Silva, E.F.C., Naves, N., Quincozes, S.E., Quincozes, V.E., Kazienko, J.F., Cheikhrouhou, O. (2023). GDLS-FS: Scaling Feature Selection for Intrusion Detection with GRASP-FS and Distributed Local Search. In: Barolli, L. (eds) Advanced Information Networking and Applications. AINA 2023. Lecture Notes in Networks and Systems, vol 654. Springer, Cham. https://doi.org/10.1007/978-3-031-28451-9_18

Download citation

Publish with us

Policies and ethics