Abstract
The use of Machine Learning (ML) approaches to design anomaly-based network intrusion detection systems (A-NIDS) has been attracting growing interest due to, first, the ability of an A-NIDS to detect unpredictable and previously unseen network attacks, and second, the efficiency and accuracy of ML techniques to classify normal and malicious network traffic compared to other approaches. In this paper, we provide a comprehensive experimental evaluation of various ML approaches including Logistic Regression (LR), Decision Tree (DT), Random Forest (RF), and Artificial Neural Network (ANN), on a recently published benchmark dataset called UNSW-NB15 considering both binary and multi-class classification. Throughout the experiments, we show that ANN is more accurate and has fewer false alarm rates (FARs) compared to other classifiers, which makes Deep Learning (DL) approaches a good candidate compared to shallow learning for future research. Moreover, we conducted our experiments in a way to be served as a benchmark results since our used approaches are trained and tested on the configuration deliberately provided by the authors of UNSW-NB15 dataset for the purpose of direct comparison.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Bigdeli, E., Mohammadi, M., Raahemi, B., Matwin, S.: Incremental anomaly detection using two-layer cluster-based structure. Inf. Sci. 429, 315–331 (2018)
Buczak, A.L., Guven, E.: A survey of data mining and machine learning methods for cyber security intrusion detection. IEEE Commun. Surv. Tutor. 18(2), 1153–1176 (2016)
Diallo, A.F., Patras, P.: Adaptive clustering-based malicious traffic classification at the network edge. In: IEEE INFOCOM, pp. 1–10. IEEE (2021)
Dromard, J., Roudière, G., Owezarski, P.: Online and scalable unsupervised network anomaly detection method. IEEE Trans. Netw. Serv. Manag. 14(1), 34–47 (2017)
Fernandes, G., Rodrigues, J.J.P.C., Carvalho, L.F., Al-Muhtadi, J.F., Proença, M.L.: A comprehensive survey on network anomaly detection. Telecommun. Syst. 70(3), 447–489 (2019). https://doi.org/10.1007/s11235-018-0475-8
GarcÃa-Teodoro, P., DÃaz-Verdejo, J., Maciá-Fernández, G., Vázquez, E.: Anomaly-based network intrusion detection: techniques, systems and challenges. Comput. Secur. 28(1–2), 18–28 (2009)
Goodfellow, I.J., et al.: Generative adversarial networks (2014)
Guarino, I., Bovenzi, G., Di Monda, D., Aceto, G., Ciuonzo, D., Pescapé, A.: On the use of machine learning approaches for the early classification in network intrusion detection. In: IEEE M &N, pp. 1–6 (2022)
Hettich, S., Bay, S.D.: KDD Cup 1999 Data
Ingre, B., Yadav, A.: Performance analysis of NSL-KDD dataset using ANN. IN: SPACES, pp. 92–96 (2015)
Jeong, H., Yu, J., Lee, W.: Poster abstract: a semi-supervised approach for network intrusion detection using generative adversarial networks. IEEE Infocom, pp. 31–32 (2021)
Kim, T., Suh, S.C., Kim, H., Kim, J., Kim, J.: An encoding technique for CNN-based network anomaly detection. In: Big Data, pp. 2960–2965 (2019)
Li, H., Chasaki, D.: Ensemble machine learning for intrusion detection in cyber-physical systems. In: INFOCOM WKSHPS, pp. 12–13. IEEE (2021)
Liao, H.J., Richard Lin, C.H., Lin, Y.C., Tung, K.Y.: Intrusion detection system: a comprehensive review. J. Netw. Comput. Appl. 1, 16–24 (2013)
Mishra, P., Varadharajan, V., Tupakula, U., Pilli, E.S.: A detailed investigation and analysis of using machine learning techniques for intrusion detection. IEEE Commun. Surv. Tutor. 21(1), 686–728 (2019)
Moustafa, N., Slay, J.: UNSW-NB15: a comprehensive data set for network intrusion detection systems (UNSW-NB15 network data set). In: MilCIS, pp. 1–6. IEEE (2015)
Moustafa, N., Slay, J.: The evaluation of Network Anomaly Detection Systems: statistical analysis of the UNSW-NB15 data set and the comparison with the KDD99 data set. Inf. Secur. J. 25(1–3), 18–31 (2016)
Odena, A.: Semi-supervised learning with generative adversarial networks. arXiv preprint arXiv:1606.01583 (2016)
Salimans, T., et al.: Improved techniques for training GANs, vol. 29. Curran Associates, Inc. (2016)
Sharafaldin, I., Lashkari, A.H., Ghorbani, A.A.: Toward generating a new intrusion detection dataset and intrusion traffic characterization. In: ICISSP 2018 (Cic), pp. 108–116 (2018)
Shiravi, A., Shiravi, H., Tavallaee, M., Ghorbani, A.A.: Toward developing a systematic approach to generate benchmark datasets for intrusion detection. Comput. Secur. 3, 357–374 (2012)
Staudemeyer, R.C.: Applying long short-term memory recurrent neural networks to intrusion detection. S. Afr. Comput. J. 56(56), 136–154 (2015)
Švihrová, R., Lettner, C.: A semi-supervised approach for network intrusion detection. In: ACM International Conference Proceeding Series (2020)
Tavallaee, M., Bagheri, E., Lu, W., Ghorbani, A.A.: A detailed analysis of the KDD CUP 99 data set. In: 2009 IEEE Symposium on Computational Intelligence for Security and Defense Applications, pp. 1–6 (2009)
Tool, I.P.: https://www.keysight.com/fr/en/products/network-test/network-test-hardware/perfectstorm.html
Tsakalidis, S., Doumpiotis, V., Byrne, W.: Discriminative linear transforms for feature normalization and speaker adaptation in HMM estimation. IEEE Trans. Speech Audio Process. 13(3), 367–376 (2005)
Vinayakumar, R., Alazab, M., Soman, K.P., Poornachandran, P., Al-Nemrat, A., Venkatraman, S.: Deep learning approach for intelligent intrusion detection system. IEEE Access 7, 41525–41550 (2019)
Yin, C., Zhu, Y., Fei, J., He, X.: A deep learning approach for intrusion detection using recurrent neural networks. IEEE Access 5, 21954–21961 (2017)
Zhang, C., Ma, Y.: Ensemble Machine Learning. Springer, New York (2012). https://doi.org/10.1007/978-1-4419-9326-7
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Bahlali, A.R., Bachir, A. (2023). Machine Learning Anomaly-Based Network Intrusion Detection: Experimental Evaluation. In: Barolli, L. (eds) Advanced Information Networking and Applications. AINA 2023. Lecture Notes in Networks and Systems, vol 654. Springer, Cham. https://doi.org/10.1007/978-3-031-28451-9_34
Download citation
DOI: https://doi.org/10.1007/978-3-031-28451-9_34
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-28450-2
Online ISBN: 978-3-031-28451-9
eBook Packages: Intelligent Technologies and RoboticsIntelligent Technologies and Robotics (R0)