Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Reputation at Stake! A Trust Layer over Decentralized Ledger for Multiparty Computation and Reputation-Fair Lottery

  • Conference paper
  • First Online:
Information Security and Cryptology – ICISC 2022 (ICISC 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13849))

Included in the following conference series:

  • 6587 Accesses

Abstract

This work introduces, to the best of our knowledge, the first stake based reputation and trust layer to proof of stake (PoS) system. Namely, we show that the delegation framework, introduced by Karakostas et al. (SCN’20) to provide a delegation framework, can be extended and repurposed to construct a trust layer over a PoS consensus protocol in addition to its original application. Furthermore, we show a concrete reputation system satisfying the positive results of (1) Asharov et al. (Asiacrypt’13), allowing the secure execution of multiparty protocols such as GMW (STOC’ 87) and Damgard and Ishai (Crypto’05), and (2) Kleinrock et al. (Indocrypt’20), a Reputation-fair Lottery, thus, also, a Proof of Reputation system. More concretely, our devised layer is used to construct a concrete reputation system based on arbitrary stake distribution. In this layer groups of users can freely and dynamically “assign their respective trust” to members of a set of trustees, i.e. participants that offered themselves as receivers of such assignment. Furthermore, our work offers the advantage of providing a clear stake based criteria, verifiable in the ledger, and, therefore, naturally resistant to sybil attack, that the set of trustees indeed yields an honest majority. This setting provides a better situation than a simple assumption of honest majority, since it involves stake in a decentralized ledger, and the public verifiability of the reputation score via verification of the stake distribution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Asharov, G., Lindell, Y., Zarosim, H.: Fair and Efficient Secure Multiparty Computation with Reputation Systems. In: Sako, K., Sarkar, P. (eds.) ASIACRYPT 2013. LNCS, vol. 8270, pp. 201–220. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-42045-0_11

    Chapter  Google Scholar 

  2. Badertscher, C., Gaži, P., Kiayias, A., Russell, A., Zikas, V.: Ouroboros genesis: composable proof-of-stake blockchains with dynamic availability. In: Proceedings of the 2018 ACM SIGSAC Conference on Computer and Communications Security, CCS 2018, pp. 913–930. ACM, New York (2018)

    Google Scholar 

  3. Biryukov, A., Feher, D., Khovratovich, D.: Guru: universal reputation module for distributed consensus protocols. Cryptology ePrint Archive, Report 2017/671 (2017). http://eprint.iacr.org/2017/671

  4. Canetti, R.: Security and composition of multiparty cryptographic protocols. J. Cryptol. 13(1), 143–202 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  5. Canetti, R., Dodis, Y., Pass, R., Walfish, S.: Universally composable security with global setup. In: Vadhan, S.P. (ed.) TCC 2007. LNCS, vol. 4392, pp. 61–85. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-70936-7_4

    Chapter  Google Scholar 

  6. Damgård, I., Ishai, Y.: Constant-round multiparty computation using a black-box pseudorandom generator. In: Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 378–394. Springer, Heidelberg (2005). https://doi.org/10.1007/11535218_23

    Chapter  Google Scholar 

  7. David, B., Gaži, P., Kiayias, A., Russell, A.: Ouroboros praos: an adaptively-secure, semi-synchronous proof-of-stake protocol. Cryptology ePrint Archive, Report 2017/573 (2017). http://eprint.iacr.org/2017/573

  8. Dimitriou, T.: Decentralized reputation. Cryptology ePrint Archive, Report 2020/761 (2020). https://eprint.iacr.org/2020/761

  9. Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game or a completeness theorem for protocols with honest majority. In: Aho, A. (ed.) 19th ACM STOC, pp. 218–229. ACM Press, May 1987

    Google Scholar 

  10. Gutscher, A.: A trust model for an open, decentralized reputation system. In: Etalle, S., Marsh, S. (eds.) IFIPTM 2007. IIFIP, vol. 238, pp. 285–300. Springer, Boston, MA (2007). https://doi.org/10.1007/978-0-387-73655-6_19

    Chapter  Google Scholar 

  11. Hoeffding, W.: Probability inequalities for sums of bounded random variables, pp. 409–426. Springer, New York (1994)

    Google Scholar 

  12. Josang, A., Ismail, R., Boyd, C.: A survey of trust and reputation systems for online service provision. Decis. Support Syst. 43(2), 618–644 (2007)

    Article  Google Scholar 

  13. Karakostas, D., Kiayias, A., Larangeira, M.: Account Management in Proof of Stake Ledgers. In: Galdi, C., Kolesnikov, V. (eds.) SCN 2020. LNCS, vol. 12238, pp. 3–23. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-57990-6_1

    Chapter  Google Scholar 

  14. Kerber, T., Kiayias, A., Kohlweiss, M.: Kachina - foundations of private smart contracts. In: 2021 2021 IEEE 34th Computer Security Foundations Symposium (CSF), pp. 47–62. IEEE Computer Society, Los Alamitos, June 2021

    Google Scholar 

  15. Kerber, T., Kiayias, A., Kohlweiss, M., Zikas, V.: Ouroboros crypsinous: privacy-preserving proof-of-stake. In: 2019 IEEE Symposium on Security and Privacy, pp. 157–174. IEEE Computer Society Press, May 2019

    Google Scholar 

  16. Kiayias, A., Russell, A., David, B., Oliynykov, R.: Ouroboros: A Provably Secure Proof-of-Stake Blockchain Protocol. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017. LNCS, vol. 10401, pp. 357–388. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63688-7_12

    Chapter  Google Scholar 

  17. Kleinrock, L., Ostrovsky, R., Zikas, V.: Proof-of-Reputation Blockchain with Nakamoto Fallback. In: Bhargavan, K., Oswald, E., Prabhakaran, M. (eds.) INDOCRYPT 2020. LNCS, vol. 12578, pp. 16–38. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-65277-7_2

    Chapter  Google Scholar 

  18. Wuille, P.: Decentralized identifiers (dids) v1.0 (2021). https://en.bitcoin.it/wiki/BIP_0032. Accessed 23 Feb 2021

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mario Larangeira .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Larangeira, M. (2023). Reputation at Stake! A Trust Layer over Decentralized Ledger for Multiparty Computation and Reputation-Fair Lottery. In: Seo, SH., Seo, H. (eds) Information Security and Cryptology – ICISC 2022. ICISC 2022. Lecture Notes in Computer Science, vol 13849. Springer, Cham. https://doi.org/10.1007/978-3-031-29371-9_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-29371-9_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-29370-2

  • Online ISBN: 978-3-031-29371-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics