Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Improving the Performance of Lattice Boltzmann Method with Pipelined Algorithm on A Heterogeneous Multi-zone Processor

  • Conference paper
  • First Online:
Parallel and Distributed Computing, Applications and Technologies (PDCAT 2022)

Abstract

Lattice Boltzmann method (LBM) has become a powerful method in computational fluid dynamics and has drawn more and more attention in high-performance computing due to its particulate nature and local dynamics, especially on recent multi-core or many-core platforms. This paper develops a parallel software framework for 3D LBM simulation on a heterogeneous multi-zone processor, MT-3000. An improved pipelined algorithm named Pencil-H is proposed, which can not only fully exploit the advantages of each component of MT-3000 but also overlap the time of calculation and communication. Moreover, an architecture-aware multi-level parallelization algorithm is developed to fully utilize the computational performance of MT-3000. A benchmark test is performed to verify the reliability and test the performance of the LBM code. Experimental results show that the optimized code achieves a 32.02\(\times \) speedup compared with using 16 CPU cores and achieves a performance of 286.03MLUPS which reaches 72.3% of the theoretical peak performance.

This work was partially supported by the National Key Research and Development Program of China (2021YFB0300101), NSFC (Nos. 62161160312, 12071461 and 12101588), and Shenzhen Fund (No. RCYX20200714114735074).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Reyhanian, E., Dorschner, B., Karlin, I.V.: Thermokinetic lattice Boltzmann model of nonideal fluids. Phys. Rev. E 102(2), 020103 (2020)

    Article  MathSciNet  Google Scholar 

  2. Feiger, B., Vardhan, M., Gounley, J., et al.: Suitability of lattice Boltzmann inlet and outlet boundary conditions for simulating flow in image-derived vasculature. Commun. Numer. Methods Eng. 35(6), e3198 (2019)

    MathSciNet  Google Scholar 

  3. Han, M., Ooka, R., Kikumoto, H.: Lattice Boltzmann method-based large-eddy simulation of indoor isothermal airflow. Int. J. Heat Mass Transf. 130, 700–709 (2019)

    Article  Google Scholar 

  4. Xu, L., Chen, R., Cai, X.C.: Parallel finite-volume discrete Boltzmann method for inviscid compressible flows on unstructured grids. Phys. Rev. E 103(2), 023306 (2021)

    Article  MathSciNet  Google Scholar 

  5. Guo, W., Jin, C., Li, J.: High performance lattice Boltzmann algorithms for fluid flows. In: 2008 International Symposium on Information Science and Engineering, pp. 33–37. IEEE, Shanghai (2008)

    Google Scholar 

  6. Ho, M.Q., Obrecht, C., Tourancheau, B., et al.: Improving 3D Lattice Boltzmann method stencil with asynchronous transfers on many-core processors. In: IEEE 36th International Performance Computing and Communications Conference (IPCCC), pp. 1–9. IEEE, San Diego (2017)

    Google Scholar 

  7. Bailey, P., Myre, J., Walsh, S.D.C., et al.: Accelerating lattice Boltzmann fluid flow simulations using graphics processors. In: 2009 International Conference on Parallel Processing, pp. 550–557, Vienna (2009)

    Google Scholar 

  8. Kraus, J., Pivanti, M., Schifano, S.F., et al.: Benchmarking GPUs with a parallel Lattice-Boltzmann code. In: 2013 25th International Symposium on Computer Architecture and High Performance Computing, pp. 160–167, Porto de Galinhas (2013)

    Google Scholar 

  9. Tran, N.P., Lee, M., Choi, D.H.: Memory-efficient parallelization of 3D lattice Boltzmann flow solver on a GPU. In: 2015 IEEE 22nd International Conference on High Performance Computing (HiPC), pp. 315–324. IEEE, Bengaluru (2015)

    Google Scholar 

  10. Herschlag, G., Lee, S., Vetter, J.S., et al.: GPU data access on complex geometries for D3Q19 lattice Boltzmann method. In: 2018 IEEE International Parallel & Distributed Processing Symposium, vol 32, pp. 2400–2414. IEEE, Vancouver (2018)

    Google Scholar 

  11. Chen, D., Ken, K.: Improving effective bandwidth through compiler enhancement of global cache reuse. J. Parallel Distrib. Comput. 64(1), 108–134 (2004)

    Article  MATH  Google Scholar 

  12. Vardhan, M., Gounley, J., Hegele, L., et al.: Moment representation in the lattice Boltzmann method on massively parallel hardware. In: International Conference for High Performance Computing. Networking, Storage and Analysis, pp. 1–21. IEEE, Denver (2019)

    Google Scholar 

  13. Gounley, J., Vardhan, M., Draeger, E.W., et al.: Propagation pattern for moment representation of the lattice Boltzmann method. IEEE Trans. Parallel Distrib. Syst. 33(3), 642–653 (2021)

    Article  Google Scholar 

  14. Biferale, L., Sbragaglia, M., Scagliarini, A., et al.: Lattice Boltzmann method simulations on massively parallel multi-core architectures. In: the 19th High Performance Computing Symposia, pp. 73–80, San Diego (2011)

    Google Scholar 

  15. Fu, Y., Li, F., Song, F., et al.: Designing a parallel memory-aware lattice Boltzmann algorithm on manycore systems. In: 2018 30th International Symposium on Computer Architecture and High Performance Computing (SBAC-PAD), pp. 97–106, Lyon (2018)

    Google Scholar 

  16. Fan, S., Guo, X., Li, C., et al.: Apoal: an adaptive parallel optimization algorithm for LBM fluid simulations. In: 2019 IEEE 21st International Conference on High Performance Computing and Communications; IEEE 17th International Conference on Smart City; IEEE 5th International Conference on Data Science and Systems (HPCC/SmartCity/DSS), pp. 834–840. IEEE, Zhangjiajie (2019)

    Google Scholar 

  17. Roberts\(\acute{e}\)n, F., Mattila, K., Westerholm, J.: High-performance SIMD implementation of the lattice Boltzmann method on the Xeon Phi processor. Concurrency Comput.: Pract. Experience 31(13), e5072 (2019)

    Google Scholar 

  18. Liu, Z., Chu, X.S., Lv, X., et al.: SunwayLB: enabling extreme-scale lattice Boltzmann method based computing fluid dynamics simulations on sunway taihulight. In: 2019 IEEE International Parallel and Distributed Processing Symposium, pp. 557–566. IEEE, Rio de Janeiro (2019)

    Google Scholar 

  19. Lu, K., Wang, Y., Guo, Y., et al.: MT-3000: a heterogeneous multi-zone processor for HPC. CCF Trans. High Perform. Comput. 4(2), 1–15 (2022). https://doi.org/10.1007/s42514-022-00095-y

    Article  Google Scholar 

  20. Guo, Z., Shu, C.: Lattice Boltzmann Method and its Applications in Engineering. World Scientific Publishing, Singapore (2013)

    Book  MATH  Google Scholar 

  21. Kruger, T., Kusumaatmaja, H., Kuzmin, R.A., et al.: The Lattice Boltzmann Method: Principles and Practice. Springer, New York (2017)

    Book  MATH  Google Scholar 

  22. Succi, S.: The lattice Boltzmann Equation for Complex States of Flowing Matter. Oxford University Press, Oxford (2019)

    MATH  Google Scholar 

  23. Pohl, T., Kowarschik, M., Wilke, J., et al.: Optimization and profiling of the cache performance of parallel lattice Boltzmann codes. Parallel Process. Lett. 13(4), 549–560 (2003)

    Article  MathSciNet  Google Scholar 

  24. Wang, H., Chandramowlishwaran, A.: Pencil: a pipelined algorithm for distributed stencils, In: SC 2020: Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis, pp. 1–16. ACM, Atlanta (2020)

    Google Scholar 

  25. Yoshiea, R., Mochidab, A., Tominagac, Y., et al.: Cooperative project for CFD prediction of pedestrian wind environment in the architectural institute of Japan. J. Wind Eng. Ind. Aerodyn. 95(9–11), 1551–1578 (2007)

    Article  Google Scholar 

  26. Wellein, G., Zeiser, T., Hager, G., Donath, S.: On the single processor performance of simple lattice Boltzmann kernels. Comput. Fluids 35(8–9), 910–919 (2006)

    Article  MATH  Google Scholar 

  27. Godenschwager, C., Schornbaum, F., Bauer, M., et al.: A framework for hybrid parallel flow simulations with a trillion cells in complex geometries. In: SC 2013: Proceedings of the International Conference on High Performance Computing, Networking, Storage and Analysis, pp. 1–12. ACM, Denver (2013)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bo Yang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhang, Q. et al. (2023). Improving the Performance of Lattice Boltzmann Method with Pipelined Algorithm on A Heterogeneous Multi-zone Processor. In: Takizawa, H., Shen, H., Hanawa, T., Hyuk Park, J., Tian, H., Egawa, R. (eds) Parallel and Distributed Computing, Applications and Technologies. PDCAT 2022. Lecture Notes in Computer Science, vol 13798. Springer, Cham. https://doi.org/10.1007/978-3-031-29927-8_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-29927-8_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-29926-1

  • Online ISBN: 978-3-031-29927-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics