Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Effects of Locality and Rule Language on Explanations for Knowledge Graph Embeddings

  • Conference paper
  • First Online:
Advances in Intelligent Data Analysis XXI (IDA 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13876))

Included in the following conference series:

Abstract

Knowledge graphs (KGs) are key tools in many AI-related tasks such as reasoning or question answering. This has, in turn, propelled research in link prediction in KGs, the task of predicting missing relationships from the available knowledge. Solutions based on KG embeddings have shown promising results in this matter. On the downside, these approaches are usually unable to explain their predictions. While some works have proposed to compute post-hoc rule explanations for embedding-based link predictors, these efforts have mostly resorted to rules with unbounded atoms, e.g., \(\textit{bornIn}(x,y) \Rightarrow \textit{residence}(x,y)\), learned on a global scope, i.e., the entire KG. None of these works has considered the impact of rules with bounded atoms such as \(\textit{nationality}(x,\textit{England}) \Rightarrow \textit{speaks}(x, \textit{English})\), or the impact of learning from regions of the KG, i.e., local scopes. We therefore study the effects of these factors on the quality of rule-based explanations for embedding-based link predictors. Our results suggest that more specific rules and local scopes can improve the accuracy of the explanations. Moreover, these rules can provide further insights about the inner-workings of KG embeddings for link prediction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Most methods embed the entities in real spaces, i.e., in \(\mathbb {R}^k\), but a few, e.g.,[31] resort to vectors of complex numbers.

  2. 2.

    \(\oplus \) denotes concatenation; sub-contexts are corrupted to obtain counter-examples.

  3. 3.

    These are safe rules where each variable occurs in at least 2 atoms.

  4. 4.

    Rule (8), on the other hand, refers to a women’s football team.

References

  1. UniKER: a unified framework for combining embedding and horn rules for knowledge graph inference. In: ICML Workshop on Graph Representation Learning and Beyond (GRL+) (2020)

    Google Scholar 

  2. Ahmadi, N., Huynh, V.-P., Meduri, V., Ortona, S., Papotti, P.: Mining expressive rules in knowledge graphs. J. Data Inf. Qual. 1(1) (2019)

    Google Scholar 

  3. Akrami, F., Saeef, M.S., Zhang, Q., Hu, W., Li, C.: Realistic re-evaluation of knowledge graph completion methods: an experimental study. In: ACM SIGMOD Conference (2020)

    Google Scholar 

  4. Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J., Yakhnenko, O.: Translating embeddings for modeling multi-relational data. In: Advances in Neural Information Processing Systems, vol. 26 (2013)

    Google Scholar 

  5. Boschin, A: TorchKGE: knowledge graph embedding in Python and PyTorch. In: International Workshop on Knowledge Graphs (2020)

    Google Scholar 

  6. Boschin, A., Jain, N., Keretchashvili, G., Suchanek, F.: Combining embeddings and rules for fact prediction. In: International Research School in AI in Bergen, Schloss Dagstuhl-Leibniz-Zentrum für Informatik (2022)

    Google Scholar 

  7. Carmona, I.S., Riedel, S.: Extracting interpretable models from matrix factorization models. In: International Conference on Cognitive Computation (2015)

    Google Scholar 

  8. Chen, Y., Wang, D.Z., Goldberg, S.: ScaLeKB: scalable learning and inference over large knowledge bases. VLDB J. 25(6) (2016)

    Google Scholar 

  9. Gad-Elrab, M.H., Stepanova, D., Tran, T.-K., Adel, H., Weikum, G.: ExCut: explainable embedding-based clustering over knowledge graphs. In: Pan, J.Z., et al. (eds.) ISWC 2020. LNCS, vol. 12506, pp. 218–237. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-62419-4_13

    Chapter  Google Scholar 

  10. Galárraga, L., Teflioudi, C., Hose, K., Suchanek, F.M.: Fast rule mining in ontological knowledge bases with AMIE+. VLDB J. 24(6) (2015)

    Google Scholar 

  11. Guo, S., et al.: Knowledge graph embedding preserving soft logical regularity. In: International Conference on Knowledge Management (2020)

    Google Scholar 

  12. Hou, Z., Jin, X., Li, Z., Bai, L.: Rule-aware reinforcement learning for knowledge graph reasoning. In: ACL/IJCNLP (Findings) (2021)

    Google Scholar 

  13. Jain, N., Tran, T.-K., Gad-Elrab, M.H., Stepanova, D.: Improving knowledge graph embeddings with ontological reasoning. In: Hotho, A., et al. (eds.) ISWC 2021. LNCS, vol. 12922, pp. 410–426. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-88361-4_24

    Chapter  Google Scholar 

  14. Ji, S., Pan, S., Cambria, E., Marttinen, P., Yu, P.S.: A survey on knowledge graphs: representation, acquisition, and applications. IEEE Trans. Neural Netw. Learn. Syst. 33(2) (2022)

    Google Scholar 

  15. Lajus, J., Galárraga, L., Suchanek, F.: Fast and exact rule mining with AMIE 3. In: Harth, A., et al. (eds.) ESWC 2020. LNCS, vol. 12123, pp. 36–52. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-49461-2_3

    Chapter  Google Scholar 

  16. Lao, N., Mitchell, T., Cohen, W.W.: Random walk inference and learning in a large scale knowledge base. In: Conference on Empirical Methods in Natural Language Processing (2011)

    Google Scholar 

  17. Meilicke, C., Betz, P., Stuckenschmidt, H.: Why a Naive way to combine symbolic and latent knowledge base completion works surprisingly well. In: 3rd Conference on Automated Knowledge Base Construction (2021)

    Google Scholar 

  18. Meilicke, C., Fink, M., Wang, Y., Ruffinelli, D., Gemulla, R., Stuckenschmidt, H.: Fine-grained evaluation of rule- and embedding-based systems for knowledge graph completion. In: Vrandečić, D., et al. (eds.) ISWC 2018. LNCS, vol. 11136, pp. 3–20. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00671-6_1

    Chapter  Google Scholar 

  19. Meng, C., Cheng, R., Maniu, S., Senellart, P., Zhang, W.: Discovering meta-paths in large heterogeneous information networks. In: The Web Conference (2015)

    Google Scholar 

  20. Nguyen, D.Q., Nguyen, T.D., Nguyen, D.Q., Phung, D.: A novel embedding model for knowledge base completion based on convolutional neural network. In: Conference of the North American Chapter of the Association for Computational Linguistics (2018)

    Google Scholar 

  21. Nickel, M., Rosasco, L., Poggio, T.: Holographic embeddings of knowledge graphs. In: AAAI Conference on Artificial Intelligence (2016)

    Google Scholar 

  22. Nickel, M., Tresp, V.: Tensor factorization for multi-relational learning. In: Blockeel, H., Kersting, K., Nijssen, S., Železný, F. (eds.) ECML PKDD 2013. LNCS (LNAI), vol. 8190, pp. 617–621. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40994-3_40

    Chapter  Google Scholar 

  23. Peake, G., Wang, J.: Explanation mining: post hoc interpretability of latent factor models for recommendation systems. In: ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (2018)

    Google Scholar 

  24. Ribeiro, M.T., Singh, S., Guestrin, C.: Why should I trust you?: explaining the predictions of any classifier. In: ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (2016)

    Google Scholar 

  25. Rocktäschel, T., Riedel, S.: End-to-end differentiable proving. In: Conference on Neural Information Processing Systems (2017)

    Google Scholar 

  26. Ruschel, A., Gusmão, A.C., Polleti, G.P., Cozman, F.G.: Explaining completions produced by embeddings of knowledge graphs. In: Kern-Isberner, G., Ognjanović, Z. (eds.) ECSQARU 2019. LNCS (LNAI), vol. 11726, pp. 324–335. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-29765-7_27

    Chapter  Google Scholar 

  27. Sanchez, I., Rocktaschel, T., Riedel, S., Singh, S.: Towards extracting faithful and descriptive representations of latent variable models. In: AAAI Spring Symposium on Knowledge Representation and Reasoning (2015)

    Google Scholar 

  28. Shang, C., Tang, Y., Huang, J., Bi, J., He, X., Zhou, B.: End-to-end structure-aware convolutional networks for knowledge base completion. In: AAAI Conference on Artificial Intelligence (2019)

    Google Scholar 

  29. Socher, R., Chen, D., Manning, C.D., Ng, A.Y.: Reasoning with neural tensor networks for knowledge base completion. In: Conference on Neural Information Processing Systems (2013)

    Google Scholar 

  30. Sun, Z., Deng, Z.-H., Nie, J.-Y., Tang, J.: RotatE: knowledge graph embedding by relational rotation in complex space. In: International Conference on Learning Representations (2019)

    Google Scholar 

  31. Trouillon, T., Welbl, J., Riedel, S., Gaussier, É., Bouchard, G.: Complex embeddings for simple link prediction. In: International Conference on Machine Learning (2016)

    Google Scholar 

  32. Wagner, C., Graells-Garrido, E., Garcia, D., Menczer, F.: Women through the glass ceiling: gender asymmetries in Wikipedia. EPJ Data Sci. 5, 1–24 (2016)

    Article  Google Scholar 

  33. Wang, Z., Zhang, J., Feng, J., Chen, Z.: Knowledge graph embedding by translating on hyperplanes. In: AAAI Conference on Artificial Intelligence, vol. 28, no. 1 (2014)

    Google Scholar 

  34. Yang, B., Yih, S.W., He, X., Gao, J., Deng, L.: Embedding entities and relations for learning and inference in knowledge bases. In: International Conference on Learning Representations (2015)

    Google Scholar 

  35. Zhang, W., et al.: Iteratively learning embeddings and rules for knowledge graph reasoning. In: The Web Conference (2019)

    Google Scholar 

  36. Zhang, Y., Yao, Q., Chen, L.: Efficient, Simple and Automated Negative Sampling for Knowledge Graph Embedding (2020)

    Google Scholar 

Download references

Acknowledgment

This research was supported by TAILOR, a project funded by EU Horizon 2020 research and innovation programme under GA No. 952215.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luis Galárraga .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Galárraga, L. (2023). Effects of Locality and Rule Language on Explanations for Knowledge Graph Embeddings. In: Crémilleux, B., Hess, S., Nijssen, S. (eds) Advances in Intelligent Data Analysis XXI. IDA 2023. Lecture Notes in Computer Science, vol 13876. Springer, Cham. https://doi.org/10.1007/978-3-031-30047-9_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-30047-9_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-30046-2

  • Online ISBN: 978-3-031-30047-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics