Abstract
Unsupervised anomaly segmentation (UAS) is promising in many computer vision applications, e.g., the analysis of brain MRI, thanks to the advantage of detecting the anomalies (lesions) by only using the normal samples (healthy anatomies) in the training phase. Existing methods utilize the reconstruction process to model the normative distribution but inevitably lead to the impairment of localization information, which is critical for the pixel-level detection task. In this paper, we address this challenge by formulating a semantic layout of the healthy anatomy as the reconstruction manifold, which naturally forces the embedding to explicitly encode more semantic features as well as facilitates the preservation of spatial information during the reconstruction. Based on this special autoencoder framework of Semantic-Manifold Reconstruction (SMR), we further apply two consistency regularizations not only on the semantic layout but also the image appearance. In this way a Dual Semantic-Manifold Reconstruction (DSMR) is trained and then used to detect the anomalies accurately. Experiments reveal that the proposed DSMR approach exceeds the state-of-the-art performance on the benchmark datasets of BraTS and ISLES.
The study is supported partly by the National Natural Science Foundation of China under Grants 82172033, U19B2031, 52105126, 82272071, 62271430, and 61971369.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
where Im denotes image and Se denotes semantic layout.
- 2.
- 3.
References
Baur, C., Denner, S., Wiestler, B., Navab, N., Albarqouni, S.: Autoencoders for unsupervised anomaly segmentation in brain MR images: a comparative study - science direct. Med. Image Anal. 69, 101952 (2021)
Ashburner, J., Friston, K.J.: Computing average shaped tissue probability templates. Neuroimage 45(2), 333–341 (2009)
Maier, O., et al.: ISLES 2015 - a public evaluation benchmark for ischemic stroke lesion segmentation from multispectral MRI. Med. Image Anal. 35, 250–269 (2017)
Bakas, S., et al.: Advancing the cancer genome atlas glioma MRI collections with expert segmentation labels and radiomic features. Sci. Data 4, 170117 (2017)
Baur, C., Graf, R., Wiestler, B., Albarqouni, S., Navab, N.: SteGANomaly: inhibiting CycleGAN steganography for unsupervised anomaly detection in brain MRI. In: Martel, A.L., et al. (eds.) MICCAI 2020. LNCS, vol. 12262, pp. 718–727. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59713-9_69
Baur, C., Wiestler, B., Albarqouni, S., Navab, N.: Deep autoencoding models for unsupervised anomaly segmentation in brain MR images. In: Crimi, A., Bakas, S., Kuijf, H., Keyvan, F., Reyes, M., van Walsum, T. (eds.) BrainLes 2018. LNCS, vol. 11383, pp. 161–169. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-11723-8_16
Baur, C., Wiestler, B., Albarqouni, S., Navab, N.: Scale-space autoencoders for unsupervised anomaly segmentation in brain MRI. In: Martel, A.L., et al. (eds.) MICCAI 2020. LNCS, vol. 12264, pp. 552–561. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59719-1_54
Chen, X., Konukoglu, E.: Unsupervised detection of lesions in brain MRI using constrained adversarial auto-encoders. arXiv preprint arXiv:1806.04972 (2018)
Eskin, E., Arnold, A., Prerau, M., Portnoy, L., Stolfo, S.: A geometric framework for unsupervised anomaly detection. In: Barbará, D., Jajodia, S. (eds.) Applications of Data Mining in Computer Security. Advances in Information Security, vol. 6, pp. 77–101. Springer, Boston (2002). https://doi.org/10.1007/978-1-4615-0953-0_4
Guthrie, D., Guthrie, L., Allison, B., Wilks, Y.: Unsupervised anomaly detection. In: International Joint Conferences on Artificial Intelligence (IJCAI), pp. 1624–1628 (2007)
Hinton, G.E., Salakhutdinov, R.R.: Reducing the dimensionality of data with neural networks. Science 313(5786), 504–507 (2006)
Hinton, G., Vinyals, O., Dean, J.: Distilling the knowledge in a neural network. arXiv preprint arXiv:1503.02531 (2015)
Isola, P., Zhu, J.Y., Zhou, T., Efros, A.A.: Image-to-image translation with conditional adversarial networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1125–1134 (2017)
Johnson, J., Alahi, A., Fei-Fei, L.: Perceptual losses for real-time style transfer and super-resolution. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9906, pp. 694–711. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46475-6_43
Leung, K., Leckie, C.: Unsupervised anomaly detection in network intrusion detection using clusters. In: Proceedings of the Twenty-Eighth Australasian Conference on Computer Science, pp. 333–342 (2005)
Menze, B.H., et al.: The multimodal brain tumor image segmentation benchmark (BRATS). IEEE Trans. Med. Imaging 34(10), 1993–2024 (2014)
Mirza, M., Osindero, S.: Conditional generative adversarial nets. arXiv preprint arXiv:1411.1784 (2014)
Mohan, G., Subashini, M.M.: MRI based medical image analysis: survey on brain tumor grade classification. Biomed. Sign. Process. Control 39, 139–161 (2018)
Müller, R., Kornblith, S., Hinton, G.E.: When does label smoothing help?. In: Advances in Neural Information Processing Systems (NeurIPS), vol. 32 (2019)
Nguyen, B., Feldman, A., Bethapudi, S., Jennings, A., Willcocks, C.G.: Unsupervised region-based anomaly detection in brain MRI with adversarial image inpainting. In: 2021 IEEE 18th International Symposium on Biomedical Imaging (ISBI), pp. 1127–1131. IEEE (2021)
Park, T., Liu, M.Y., Wang, T.C., Zhu, J.Y.: Semantic image synthesis with spatially-adaptive normalization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2337–2346 (2019)
Pawlowski, N., et al.: Unsupervised lesion detection in brain CT using Bayesian convolutional autoencoders. In: Medical Imaging with Deep Learning (2018)
Rezaei, M., Yang, H., Meinel, C.: Deep neural network with l2-norm unit for brain lesions detection. In: Liu, D., Xie, S., Li, Y., Zhao, D., El-Alfy, E.S. (eds.) ICONIP 2017. Lecture Notes in Computer Science(), vol. 10637, pp. 798–807. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70093-9_85
Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28
Schlegl, T., Seeböck, P., Waldstein, S.M., Langs, G., Schmidt-Erfurth, U.: f-AnoGAN: fast unsupervised anomaly detection with generative adversarial networks. Med. Image Anal. 54, 30–44 (2019)
Shen, Z., Liu, Z., Xu, D., Chen, Z., Cheng, K.T., Savvides, M.: Is label smoothing truly incompatible with knowledge distillation: An empirical study. In: Proceedings of the International Conference of Learning Representation (ICLR) (2020)
Taboada-Crispi, A., Sahli, H., Hernandez-Pacheco, D., Falcon-Ruiz, A.: Anomaly detection in medical image analysis. In: Handbook of Research on Advanced Techniques in Diagnostic Imaging and Biomedical Applications, pp. 426–446 (2009)
Van Essen, D.C., et al.: The WU-Minn human connectome project: an overview. Neuroimage 80, 62–79 (2013)
You, S., Tezcan, K.C., Chen, X., Konukoglu, E.: Unsupervised lesion detection via image restoration with a normative prior. In: International Conference on Medical Imaging with Deep Learning (ICDCI), pp. 540–556 (2019)
Zimmerer, D., Isensee, F., Petersen, J., Kohl, S., Maier-Hein, K.: Unsupervised anomaly localization using variational auto-encoders. In: International Conference on Medical Image Computing and Computer-Assisted Intervention (MICCAI), pp. 289–297 (2019)
Zimmerer, D., Kohl, S.A., Petersen, J., Isensee, F., Maier-Hein, K.H.: Context-encoding variational autoencoder for unsupervised anomaly detection. arXiv preprint arXiv:1812.05941 (2018)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Ding, Z., Dong, Q., Xu, H., Li, C., Ding, X., Huang, Y. (2023). Unsupervised Anomaly Segmentation for Brain Lesions Using Dual Semantic-Manifold Reconstruction. In: Tanveer, M., Agarwal, S., Ozawa, S., Ekbal, A., Jatowt, A. (eds) Neural Information Processing. ICONIP 2022. Lecture Notes in Computer Science, vol 13625. Springer, Cham. https://doi.org/10.1007/978-3-031-30111-7_12
Download citation
DOI: https://doi.org/10.1007/978-3-031-30111-7_12
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-30110-0
Online ISBN: 978-3-031-30111-7
eBook Packages: Computer ScienceComputer Science (R0)