Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Multi-Class Anomaly Detection

  • Conference paper
  • First Online:
Neural Information Processing (ICONIP 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13625))

Included in the following conference series:

Abstract

We study anomaly detection for the case when the normal class consists of more than one object category. This is an obvious generalization of the standard one-class anomaly detection problem. However, we show that jointly using multiple one-class anomaly detectors to solve this problem yields poorer results as compared to training a single one-class anomaly detector on all normal object categories together. We further develop a new anomaly detector called DeepMAD that learns compact distinguishing features by exploiting the multiple normal objects categories. This algorithm achieves higher AUC values for different datasets compared to two top performing one-class algorithms that either are trained on each normal object category or jointly trained on all normal object categories combined. In addition to theoretical results we present empirical results using the CIFAR-10, fMNIST, CIFAR-100, and a new dataset we developed called RECYCLE.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Abati, D., Porrello, A., Calderara, S., Cucchiara, R.: And: autoregressive novelty detectors. In: Proceedings of the CVPR (2019)

    Google Scholar 

  2. Ackay, A., Atapour-Abarghouei, A., Breckopn, T.P.: Ganomaly: semi-supervised anomaly detection via adversarial training. In: Proceedings of the ACCV, pp. 622–637 (2018)

    Google Scholar 

  3. Ahmed, F., Courville, A.: Detecting semantic anomalies. In: Proceedings of the AAAI, vol. 34, pp. 3154–3162 (2020)

    Google Scholar 

  4. Bergman, L., Hoshen, Y.: Classification-based anomaly detection for general data. In: Proceedings of the ICLR (2020)

    Google Scholar 

  5. Chen, T., Kornblith, S., Norouzi, M., Hinton, G.: A simple framework for contrastive learning of visual representations. In: Proceedings of the ICML (2020)

    Google Scholar 

  6. Clemen, R.T., Winkler, R.L.: Combining probability distributions from experts in risk analysis. Risk Anal. 19(2), 187–203 (1999)

    Article  Google Scholar 

  7. Dempster, A.P.: Upper and lower probabilities induced by a multivalued mapping. Ann. Math. Stat. 38(2), 325–339 (1967)

    Article  MathSciNet  MATH  Google Scholar 

  8. DeVries, T., Taylor, G.W.: Learning confidence for out-of-distribution detection in neural networks (2018)

    Google Scholar 

  9. Ghafoori, Z., Leckie, C.: Deep multi-sphere support vector data description. In: SIAM SDM (2020)

    Google Scholar 

  10. Golan, I., El-Yaniv, R.: Deep anomaly detection using geometric transformations. In: Proceedings of the NeurIPS (2018)

    Google Scholar 

  11. Goyal, S., Raghunathan, A., Simhadri, M., Jain, P.: DROCC: deep robust one-class classification. In: Proceedings of the ICML (2020)

    Google Scholar 

  12. Hendrycks, D., Gimpel, K.: A baseline for detecting misclassified and out-of-distribution examples in neural networks. In: Proceedings of the ICLR (2017)

    Google Scholar 

  13. Hendrycks, D., Mazeika, M., Dietterich, T.: Deep anomaly detection with outlier exposure. In: Proceedings of the ICLR (2019)

    Google Scholar 

  14. Hendrycks, D., Mazeika, M., Kadavath, S., Song, D.: Using self-supervised learning can improve model robustness and uncertainity. In: Proceedings of the NeurIPS (2019)

    Google Scholar 

  15. Lakshminarayanan, B., Pritzel, A., Blundell, C.: Simple and scalable predictive uncertainity estimation using deep ensembles. In: 31st Conference on Neural Information Processing Systems (2017)

    Google Scholar 

  16. Lee, K., Lee, H., Lee, K., Shin, J.: Training confidence-calibrated classifiers for detecting out-of-distribution samples (2018)

    Google Scholar 

  17. Li, D., Chen, D., Goh, J., Ng, S.K.: Anomaly detection with generative adversarial networks for multivariate time series. In: 7th International Workshop on Big Data, Streams and Heterogeneous Source Mining: Algorithms, Systems, Programming Models and Applications (ACM KDD), August 2018

    Google Scholar 

  18. Liang, S., Li, Y., Srikant, R.: Enhancing the reliability of out-of-distribution image detection in neural networks. In: Proceedings of the International Conference on Learned Representations (ICLR 2018), February 2018

    Google Scholar 

  19. Masana, M., Ruiz, I., Serrat, J., van de Weijer, J., Lopez, A.M.: Metric learning for novelty and anomaly detection. In: British Machine Vision Conference (2018)

    Google Scholar 

  20. Nguyen, D.T., Lou, Z., Klar, M., Brox, T.: Anomaly detection with multiple-hypothesis predictions. In: Proceedings of the ICML (2019)

    Google Scholar 

  21. Perera, P., Nallapati, R., Xiang, B.: Ocgan: one-class novelty detection using gans with constrained latent representations. In: Proceedings of the CVPR (2019)

    Google Scholar 

  22. Perera, P., Patel, V.M.: Deep transfer learning for multiple class novelty detection. In: Proceedings of the CVPR (2019)

    Google Scholar 

  23. Pidhorskyi, S., Almohsen, R., Adjeroh, D.A., Doretto, G.: Generative probabilistic novelty detection with adversarial autoencodres. In: Proceedings of the NeurIPS (2018)

    Google Scholar 

  24. Pimentel, M.A.F., Clifton, D.A., Clifton, L., Tarassenko, L.: A review of novelty detection. Signal Processing, pp. 215–249 (2014)

    Google Scholar 

  25. Ren, J., et al.: Likelihood ratios for out-of-distribution detection. In: 33rd Conference on Neural Information Processing Systems (2019)

    Google Scholar 

  26. Ruff, L., et al.: Deep one-class classification. In: Proceedings 35th International Conference on Machine learning (ICML). Stockholm, Sweeden (2018)

    Google Scholar 

  27. Ruff, L., et al.: Deep semi-supervised anomaly detection. In: Proceedings of the ICLR (2020)

    Google Scholar 

  28. Ruff, L., et al.: A unifying review of deep and shallow anomaly detection, September 2020. arXiv:2009.11732v2

  29. Sabokrou, M., Khalooei, M., Fathy, M., Adeli, E.: Adversarially learned one-class classifier for novelty detection. In: Proceedings of the CVPR, pp. 3379–3388 (2018)

    Google Scholar 

  30. Schlegl, T., Seebock, P., Waldstein, S.M., Schmidt-Erfurth, U., Langs, G.: Unsupervised anomaly detection with generative adversarial networks to guide marker discovery. In: International Conference on Information Processing in Medical Imaging, pp. 146–157 (2017)

    Google Scholar 

  31. Shafer, G.: Mathematical Theory of Evidence. Princeton University Press, Princeton (1976)

    Google Scholar 

  32. Sohn, K., Li, C.L., Yoon, J., Jin, M., Pfister, T.: Learning and evaluating representations for deep one-class classification. In: Proceedings of the ICLR (2021)

    Google Scholar 

  33. Song, H., Jiang, Z., Men, A., Yang, B.: A hybrid semi-supervised anomaly detection model for high-dimensional data. Computational Intelligence and Neuroscience (2017)

    Google Scholar 

  34. Tack, J., Mo, S., Jeong, J., Shin, J.: CSI: novelty detection via contrastive learning on distributionally shifted instances. In: Proceedings of the NeurIPS (2020)

    Google Scholar 

  35. Vyas, A., Jammalamadaka, N., Zhu, X., Das, D., Kaul, B., Wilke, T.L.: Out-of-distribution detection using an ensemble of self-supervised leave-out classifiers. In: Proceedings of the ECCV, pp. 550–564 (2018)

    Google Scholar 

  36. Zhang, H., Li, A., Guo, J., Guo, Y.: Hybrid models for open set recognition (2020)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suresh Singh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Singh, S., Luo, M., Li, Y. (2023). Multi-Class Anomaly Detection. In: Tanveer, M., Agarwal, S., Ozawa, S., Ekbal, A., Jatowt, A. (eds) Neural Information Processing. ICONIP 2022. Lecture Notes in Computer Science, vol 13625. Springer, Cham. https://doi.org/10.1007/978-3-031-30111-7_31

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-30111-7_31

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-30110-0

  • Online ISBN: 978-3-031-30111-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics