Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Deep Hierarchical Semantic Model for Text Matching

  • Conference paper
  • First Online:
Neural Information Processing (ICONIP 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13625))

Included in the following conference series:

  • 1063 Accesses

Abstract

In recent years, some effective textual matching models are proposed for solving NLP-related tasks. However, these models have the following issues: they cannot extract semantic information at different levels from the words of text pairs; they cannot integrate the low-level information to fine-tune the high-level information. To address these, this paper proposes a novel deep learning neural network, namely deep hierarchical semantic model (DHSM), for text matching, which consists of multiple semantic processing layers, a pooling layer, and a prediction layer. Specifically, each semantic processing layer consists of three parts: encoding part, interaction part and fusion part; and it can well represent the semantic information and enable the information interaction at different levels through attention mechanism. Moreover, the pooling layer uses pooling method to extract key information of the text pairs, based on which the prediction layer determines the relationship between text pairs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Chen, Q., Zhu, X., Ling, Z., Wei, S., Jiang, H., Inkpen, D.: Enhanced lstm for natural language inference. arXiv preprint arXiv:1609.06038 (2016)

  2. Chen, Z., et al.: Information retrieval: a view from the Chinese IR community. Front. Comp. Sci. 15(1), 1–15 (2021)

    MathSciNet  Google Scholar 

  3. Dolan, B., Brockett, C.: Automatically constructing a corpus of sentential paraphrases. In: Third International Workshop on Paraphrasing (IWP2005) (2005)

    Google Scholar 

  4. El-Alfy, E.S.M., Abdel-Aal, R.E., Al-Khatib, W.G., Alvi, F.: Boosting paraphrase detection through textual similarity metrics with abductive networks. Appl. Soft Comput. 26, 444–453 (2015)

    Article  Google Scholar 

  5. Ferreira, R., Cavalcanti, G.D., Freitas, F., Lins, R.D., Simske, S.J., Riss, M.: Combining sentence similarities measures to identify paraphrases. Comput. Speech Lang. 47, 59–73 (2018)

    Article  Google Scholar 

  6. He, B., Huang, J.X., Zhou, X.: Modeling term proximity for probabilistic information retrieval models. Inf. Sci. 181(14), 3017–3031 (2011)

    Article  MathSciNet  Google Scholar 

  7. Hu, B., Lu, Z., Li, H., Chen, Q.: Convolutional neural network architectures for matching natural language sentences. Adv. Neural Inf. Process. Syst. 27 (2014)

    Google Scholar 

  8. Jimenez, S., Duenas, G., Baquero, J., Gelbukh, A.F., Bátiz, A.J.D., Mendizábal, A.: UNAL-NLP: combining soft cardinality features for semantic textual similarity, relatedness and entailment. In: SemEval@ COLING, pp. 732–742 (2014)

    Google Scholar 

  9. Khot, T., Sabharwal, A., Clark, P.: SciTail: a textual entailment dataset from science question answering. In: Thirty-Second AAAI Conference on Artificial Intelligence (2018)

    Google Scholar 

  10. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)

  11. Lai, A., Hockenmaier, J.: Illinois-LH: a denotational and distributional approach to semantics. In: SemEval@ COLING, pp. 329–334 (2014)

    Google Scholar 

  12. Li, P., Yu, H., Zhang, W., Xu, G., Sun, X.: SA-NLI: a supervised attention based framework for natural language inference. Neurocomputing 407, 72–82 (2020)

    Article  Google Scholar 

  13. Liu, P., Qiu, X., Chen, X., Wu, S., Huang, X.J.: Multi-timescale long short-term memory neural network for modelling sentences and documents. In: Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing, pp. 2326–2335 (2015)

    Google Scholar 

  14. Liu, P., Qiu, X., Huang, X.: Dynamic compositional neural networks over tree structure. arXiv preprint arXiv:1705.04153 (2017)

  15. Liu, Y., Sun, C., Lin, L., Wang, X.: Learning natural language inference using bidirectional LSTM model and inner-attention. arXiv preprint arXiv:1605.09090 (2016)

  16. Liu, Y., Tang, A., Sun, Z., Tang, W., Cai, F., Wang, C.: An integrated retrieval framework for similar questions: word-semantic embedded label clustering-LDA with question life cycle. Inf. Sci. 537, 227–245 (2020)

    Article  MathSciNet  Google Scholar 

  17. Marchesin, S., Purpura, A., Silvello, G.: Focal elements of neural information retrieval models. An outlook through a reproducibility study. Inf. Process. Manag. 57(6), 102109 (2020)

    Google Scholar 

  18. Marco, M., Luisa, B., Raffaella, B., Stefano, M., Roberto, Z., et al.: Semeval-2014 task 1: evaluation of compositional distributional semantic models on full sentences through semantic relatedness and textual entailment. In: Proceedings of the SemEval, pp. 1–8 (2014)

    Google Scholar 

  19. Marelli, M., Menini, S., Baroni, M., Bentivogli, L., Bernardi, R., Zamparelli, R.: A sick cure for the evaluation of compositional distributional semantic models. In: Proceedings of the Ninth International Conference on Language Resources and Evaluation (LREC 2014), pp. 216–223 (2014)

    Google Scholar 

  20. Parikh, A.P., Täckström, O., Das, D., Uszkoreit, J.: A decomposable attention model for natural language inference. arXiv preprint arXiv:1606.01933 (2016)

  21. Pennington, J., Socher, R., Manning, C.D.: Glove: global vectors for word representation. In: Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 1532–1543 (2014)

    Google Scholar 

  22. Rus, V., McCarthy, P.M., Lintean, M.C., McNamara, D.S., Graesser, A.C.: Paraphrase identification with lexico-syntactic graph subsumption. In: FLAIRS Conference, pp. 201–206 (2008)

    Google Scholar 

  23. Shen, G., Deng, Z.H., Huang, T., Chen, X.: Learning to compose over tree structures via POS tags for sentence representation. Expert Syst. Appl. 141, 112917 (2020)

    Article  Google Scholar 

  24. Sun, C., Huang, L., Qiu, X.: Utilizing bert for aspect-based sentiment analysis via constructing auxiliary sentence. arXiv preprint arXiv:1903.09588 (2019)

  25. Xu, S., Shijia, E., Xiang, Y.: Enhanced attentive convolutional neural networks for sentence pair modeling. Expert Syst. Appl. 151, 113384 (2020)

    Article  Google Scholar 

  26. Zhao, H., Lu, Z., Poupart, P.: Self-adaptive hierarchical sentence model. In: Twenty-fourth International Joint Conference on Artificial Intelligence (2015)

    Google Scholar 

  27. Zhao, J., Zhu, T., Lan, M.: ECNU: one stone two birds: ensemble of heterogenous measures for semantic relatedness and textual entailment. In: SemEval@ COLING, pp. 271–277 (2014)

    Google Scholar 

  28. Zhou, G., Zhao, J., He, T., Wu, W.: An empirical study of topic-sensitive probabilistic model for expert finding in question answer communities. Knowl. Based Syst. 66, 136–145 (2014)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoyan Gongye .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Hu, C., Gongye, X., Zhang, X. (2023). Deep Hierarchical Semantic Model for Text Matching. In: Tanveer, M., Agarwal, S., Ozawa, S., Ekbal, A., Jatowt, A. (eds) Neural Information Processing. ICONIP 2022. Lecture Notes in Computer Science, vol 13625. Springer, Cham. https://doi.org/10.1007/978-3-031-30111-7_34

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-30111-7_34

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-30110-0

  • Online ISBN: 978-3-031-30111-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics