Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Multimodal Neural Network for Demand Forecasting

  • Conference paper
  • First Online:
Neural Information Processing (ICONIP 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13625))

Included in the following conference series:

Abstract

Demand forecasting applications have immensely benefited from the state-of-the-art Deep Learning methods used for time series forecasting. Traditional uni-modal models are predominantly seasonality driven which attempt to model the demand as a function of historic sales along with information on holidays and promotional events. However, accurate and robust sales forecasting calls for accommodating multiple other factors, such as natural calamities, pandemics, elections, etc., impacting the demand for products and product categories in general. We propose a multi-modal sales forecasting network that combines real-life events from news articles with traditional data such as historical sales and holiday information. Further, we fuse information from general product trends published by Google trends. Empirical results show statistically significant improvements in the SMAPE error metric with an average improvement of 7.37% against the existing state-of-the-art sales forecasting techniques on a real-world supermarket dataset.

K. Dheenadayalan and N. Kumar—Both the authors have made equal contribution towards the paper.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://www.kaggle.com/c/favorita-grocery-sales-forecasting.

  2. 2.

    https://www.usnews.com/topics/locations/ecuador.

  3. 3.

    https://elcomercio.pe/.

  4. 4.

    https://www.bbc.com/news [2014-2017].

  5. 5.

    https://pypi.org/project/googletrans/.

  6. 6.

    https://www.kaggle.com/reviewerh/news-dataset.

  7. 7.

    http://jmcauley.ucsd.edu/data/amazon/.

  8. 8.

    https://www.google.com/basepages/producttype/taxonomy-with-ids.en-US.txt.

  9. 9.

    http://trends.google.com/trends, 2020.

References

  1. Armstrong, J.S., Green, K.C.: Demand forecasting: evidence-based methods. SSRN Electron. J. (2005)

    Google Scholar 

  2. Thomassey, S.: Sales forecasts in clothing industry: the key success factor of the supply chain management. Int. J. Prod. Econ. 128(2), 470–483 (2010). Supply Chain Forecasting Systems

    Google Scholar 

  3. Sawhney, R., Agarwal, S., Wadhwa, A., Shah, R.: Deep attentive learning for stock movement prediction from social media text and company correlations. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 8415–8426, November 2020

    Google Scholar 

  4. De Livera, A.M., Hyndman, R.J.: California Air Cleaning Units Mraket. Technical report, TechScience Research (2019)

    Google Scholar 

  5. Goyal, Y., Khot, T., Summers-Stay, D., Batra, D., Parikh, D.: Making the v in vqa matter: elevating the role of image understanding in visual question answering. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 6325–6334 (2017)

    Google Scholar 

  6. Wang, W., Tran, D., Feiszli, M.: What makes training multi-modal classification networks hard? In :2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 12692–12702, Los Alamitos, CA, USA (2020). IEEE

    Google Scholar 

  7. Owens, A., Efros, A.A.: Audio-Visual Scene Analysis with Self-Supervised Multisensory Features. arXiv e-prints, page arXiv:1804.03641 (2018)

  8. Sen, R., Yu, H.-F., Dhillon, I.: Think globally, act locally: a deep neural network approach to high-dimensional time series forecasting (2019)

    Google Scholar 

  9. Chambers, R.D., Yoder, N.C.: Filternet: a many-to-many deep learning architecture for time series classification. Sensors 20(9) (2020)

    Google Scholar 

  10. Box, G.E.P., Jenkins, G.: Time Series Analysis, Forecasting and Control. Holden-Day Inc., USA (1990)

    MATH  Google Scholar 

  11. Taylor, S.J., Letham, B.: Forecasting at scale. Am. Stat. 72(1), 37–45 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  12. Makridakis, S., Wheelwright, S.C., Hyndman, R.J.: Forecasting: Methods and Applications, 3rd ed. John Wiley & Sons, USA (1997)

    Google Scholar 

  13. Lim, B., Zohren, S.: Time series forecasting with deep learning: a survey. ArXiv, abs/2004.13408 (2020)

    Google Scholar 

  14. Bengio, Y., Courville, A., Vincent, P.: Representation learning: a review and new perspectives. IEEE Trans. Pattern Anal. Mach. Intell. 35(8), 1798–1828 (2013)

    Article  Google Scholar 

  15. Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proc. IEEE 86(11), 2278–2324 (1998)

    Article  Google Scholar 

  16. Kiranyaz, S., Avci, O., Abdeljaber, O., Ince, T., Gabbouj, M., Inman, D.J.: 1D convolutional neural networks and applications: a survey. Mech. Syst. Signal Process. 151, 107398 (2021)

    Google Scholar 

  17. Nassirtoussi, A.K., Aghabozorgi, S., Wah, T.Y., Ngo, D.C.L.: Text mining of news-headlines for forex market prediction. Expert Syst. Appl. 42(1), 306–324 (2015)

    Google Scholar 

  18. Hu, Z., Liu, W., Bian, J., Liu, X., Liu, T.Y.: Listening to chaotic whispers: a deep learning framework for news-oriented stock trend prediction. In: Proceedings of the Eleventh ACM International Conference on Web Search and Data Mining, WSDM 2018, pp. 261–269, New York, NY, USA (2018)

    Google Scholar 

  19. Wang, W.Y., Hua, Z.: A semiparametric Gaussian copula regression model for predicting financial risks from earnings calls. In: Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 1155–1165, Baltimore, Maryland. Association for Computational Linguistics (2014)

    Google Scholar 

  20. Zisserman, A., et al.: The kinetics human action video dataset (2017)

    Google Scholar 

  21. Karpathy, A., Toderici, G., Shetty, S., Leung, T., Sukthankar, R., Fei-Fei, L.: Large-scale video classification with convolutional neural networks. In: 2014 IEEE Conference on Computer Vision and Pattern Recognition, pp. 1725–1732 (2014)

    Google Scholar 

  22. Li, Q., Tan, J., Wang, J., Chen, H.: A multimodal event-driven LSTM model for stock prediction using online news. IEEE Trans. Knowl. Data Eng. 1 (2020)

    Google Scholar 

  23. Mihalcea, R., Tarau, P.: TextRank: bringing order into text. In: Proceedings of the 2004 Conference on Empirical Methods in Natural Language Processing, pp. 404–411, Barcelona, Spain. Association for Computational Linguistics (2004)

    Google Scholar 

  24. Le, Q., Mikolov, T.: Distributed representations of sentences and documents. In: Proceedings of the 31st International Conference on International Conference on Machine Learning, vol. 32, ICML 2014. JMLR.org (2014)

    Google Scholar 

  25. Kulkarni, G., Kannan, P.K., Moe, W.: Using online search data to forecast new product sales. Decis. Support Syst. 52(3), 604–611 (2012)

    Google Scholar 

  26. Schnaars, S.P.: Long-range forecasting: from crystal ball to computer: J. scott armstrong, 2nd ed. Wiley, New York (1985). [uk pound] 22.95 (paper), pp. 689. International Journal of Forecasting, 2(3), 387–390, 1986

    Google Scholar 

  27. Demšar, J.: Statistical comparisons of classifiers over multiple data sets. J. Mach. Learn. Res. 7, 1–30 (2006)

    MathSciNet  MATH  Google Scholar 

  28. Lundberg, S.M., Lee, S.I.: A unified approach to interpreting model predictions. In: Guyon, I., et al. (eds.) Advances in Neural Information Processing Systems, vol. 30, pp. 4765–4774. Curran Associates Inc. (2017)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kumar Dheenadayalan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Dheenadayalan, K., Kumar, N., Reddy, S., Kulkarni, S. (2023). Multimodal Neural Network for Demand Forecasting. In: Tanveer, M., Agarwal, S., Ozawa, S., Ekbal, A., Jatowt, A. (eds) Neural Information Processing. ICONIP 2022. Lecture Notes in Computer Science, vol 13625. Springer, Cham. https://doi.org/10.1007/978-3-031-30111-7_35

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-30111-7_35

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-30110-0

  • Online ISBN: 978-3-031-30111-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics