Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Virtual Try-on via Matching Relation with Landmark

  • Conference paper
  • First Online:
Neural Information Processing (ICONIP 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13625))

Included in the following conference series:

  • 1000 Accesses

Abstract

Virtual try-on based on image synthesis aims to combine the customer’s photo with in-shop clothes to acquire a try-on image. The key to generating a realistic try-on image is whether the in-shop clothes is spatially aligned with the customer’s body. Prior methods usually directly adopt the spatial transformation network to complete the clothing deformation, but they cannot generate high-quality try-on images when facing the customer’s posture changes or complex clothes pattern. To address it, we propose a virtual try-on network based on landmark constraint (LCVTON) in this work. Specifically, we notice the corresponding relationship between the clothes feature points and the customer body feature points, making the clothes match more closely with the customer’s body. The matching of the feature points enables us to introduce the landmark constraint into the spatial transformer network for naturally and smoothly warping clothes. Moreover, we construct a refinement network and introduce the landmark constraint into it to preserve the texture details of clothes. We conducted experiments on the try-on dataset and compared our method with existing methods. Both qualitative and quantitative results demonstrate the superiority of our method compared to existing state-of-the-art method.

This work was supported in part by the National Natural Science Foundation of China under Grant 61671480, in part by the Major Scientific and Technological Projects of CNPC under Grant ZD2019-183-008, in part by the Natural Science Foundation of Shandong Province under Grant ZR2019MF073, and in part by the Fundamental Research Funds for the Central Universities, China University of Petroleum (East China) under Grant 20CX05001A.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Wang, B., Zheng, H., Liang, X., Chen, Y., Lin, L., Yang, M.: toward characteristic-preserving image-based virtual try-on network. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 589–604 (2018)

    Google Scholar 

  2. Yang, H., Zhang, R., Guo, X., Liu, W., Zuo, W., Luo, P.: Towards photo-realistic virtual try-on by adaptively generating-preserving image content. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 7850–59 (2020)

    Google Scholar 

  3. Ge, Y., Song, Y., Zhang, R., Ge, C., Liu, W., Luo, P.: Parser-free virtual try-on via distilling appearance flows. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8485–93 (2021)

    Google Scholar 

  4. Ge, C., Song, Y., Ge, Y., Yang, H., Liu, W., Luo, P.: Disentangled cycle consistency for highly-realistic virtual try-on. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 16928–16937 (2021)

    Google Scholar 

  5. He, S., Song, Y.Z., Xiang, T.: Style-based global appearance flow for virtual try-on. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3470–3479 (2022)

    Google Scholar 

  6. Han, X., Wu, Z., Wu, Z., Yu, R., Davis, L.S.: VITON: an image-based virtual try-on network. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7543–7552 (2018)

    Google Scholar 

  7. Song, D., Li, T., Mao, Z., Liu, A.-A.: SP-VITON: shape-preserving image-based virtual try-on network. Multimedia Tools Appl. 79(45), 33757–33769 (2020). https://doi.org/10.1007/s11042-019-08363-w

    Article  Google Scholar 

  8. Issenhuth, T., Mary, J., Calauzènes, C.: Do not mask what you do not need to mask: a parser-free virtual try-on. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12365, pp. 619–635. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58565-5_37

    Chapter  Google Scholar 

  9. Duchon, J.: Splines minimizing rotation-invariant semi-norms in Sobolev spaces. In: Schempp, W., Zeller, K. (eds.) Constructive Theory of Functions of Several Variables. LNM, vol. 571, pp. 85–100. Springer, Heidelberg (1977). https://doi.org/10.1007/BFb0086566

    Chapter  Google Scholar 

  10. Jaderberg, M., Simonyan, K., Zisserman, A., et al.: Spatial transformer networks. In: Advances in Neural Information Processing Systems, vol. 28 (2015)

    Google Scholar 

  11. Goodfellow, I., et al.: Generative adversarial nets. In: Advances in Neural Information Processing Systems, vol. 27 (2014)

    Google Scholar 

  12. Karnewar, A., Wang, O.: MSG-GAN: multi-scale gradients for generative adversarial networks. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 7799–7808 (2020)

    Google Scholar 

  13. Hussein, S.A., Tirer, T., Giryes, R.: Image-adaptive GAN based reconstruction. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 34, pp. 3121–3129 (2020)

    Google Scholar 

  14. Karras, T., Aila, T., Laine, S., Lehtinen, J.: Progressive growing of GANs for improved quality, stability, and variation. In: International Conference on Learning Representations (2018). https://openreview.net/forum?id=Hk99zCeAb

  15. Luc, P., Couprie, C., Chintala, S., Verbeek, J.: Semantic segmentation using adversarial networks. In: NIPS Workshop on Adversarial Training. Barcelona, Spain (2016). https://hal.inria.fr/hal-01398049

  16. Isola, P., Zhu, J.Y., Zhou, T., Efros, A.A.: Image-to-image translation with conditional adversarial networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1125–1134 (2017)

    Google Scholar 

  17. Wang, T.C., Liu, M.Y., Zhu, J.Y., Tao, A., Kautz, J., Catanzaro, B.: High-resolution image synthesis and semantic manipulation with conditional GANs. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 8798–8807 (2018)

    Google Scholar 

  18. Karras, T., Laine, S., Aittala, M., Hellsten, J., Lehtinen, J., Aila, T.: Analyzing and improving the image quality of StyleGAN. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8110–19 (2020)

    Google Scholar 

  19. Shaham, T.R., Dekel, T., Michaeli, T.: Singan: learning a generative model from a single natural image. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4570–80 (2019)

    Google Scholar 

  20. Abdal, R., Zhu, P., Mitra, N.J., Wonka, P.: Styleflow: attribute-conditioned exploration of styleGAN-generated images using conditional continuous normalizing flows. ACM Trans. Graph. (TOG) 40(3), 1–21 (2021)

    Article  Google Scholar 

  21. Karras, T., Laine, S., Aila, T.: A style-based generator architecture for generative adversarial networks. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4401–4410 (2019)

    Google Scholar 

  22. Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5693–5703 (2019)

    Google Scholar 

  23. Lin, T.H.: Aggregation and Finetuning for Clothes Landmark Detection (2020)

    Google Scholar 

  24. Gong, K., Liang, X., Zhang, D., Shen, X., Lin, L.: Look into person: self-supervised structure-sensitive learning and a new benchmark for human parsing. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 932–940 (2017)

    Google Scholar 

  25. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  26. Goodfellow, I., Bengio, Y., Courville, A.: Deep Learning. MIT press, Cambridge (2016)

    MATH  Google Scholar 

  27. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. ArXiv Preprint ArXiv:1409.1556 (2014)

  28. Johnson, J., Alahi, A., Fei-Fei, L.: Perceptual losses for real-time style transfer and super-resolution. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9906, pp. 694–711. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46475-6_43

    Chapter  Google Scholar 

  29. Ge, Y., Zhang, R., Wang, X., Tang, X., Luo, P.: Deepfashion2: a versatile benchmark for detection, pose estimation, segmentation and re-identification of clothing images. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5337–5345 (2019)

    Google Scholar 

  30. Salimans, T., Goodfellow, I., Zaremba, W., Cheung, V., Radford, A., Chen, X.: Improved techniques for training GANs. In: Advances in Neural Information Processing Systems, vol. 29 (2016)

    Google Scholar 

  31. Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process. 13(4), 600–6112 (2004)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiaoping Lu or Weifeng Liu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wu, H., Yao, X., Liu, B., Lu, X., Liu, W. (2023). Virtual Try-on via Matching Relation with Landmark. In: Tanveer, M., Agarwal, S., Ozawa, S., Ekbal, A., Jatowt, A. (eds) Neural Information Processing. ICONIP 2022. Lecture Notes in Computer Science, vol 13625. Springer, Cham. https://doi.org/10.1007/978-3-031-30111-7_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-30111-7_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-30110-0

  • Online ISBN: 978-3-031-30111-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics