Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Anatomical Landmarks Localization for 3D Foot Point Clouds

  • Conference paper
  • First Online:
Neural Information Processing (ICONIP 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13625))

Included in the following conference series:

  • 968 Accesses

Abstract

3D anatomical landmarks play an important role in health research. Their automated prediction/localization thus becomes a vital task. In this paper, we introduce a deformation method for 3D anatomical landmarks prediction. It utilizes a source model with anatomical landmarks which are annotated by clinicians and deforms this model non-rigidly to match the target model. Two constraints are presented in the optimization, which are responsible for alignment and smoothness, respectively. Experiments are performed on our dataset and the results demonstrate the robustness of our method and show that it yields better performance than the previous techniques in most cases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. O’Neil, A.Q., et al.: Attaining human-level performance with atlas location autocontext for anatomical landmark detection in 3D CT data. In: Proceedings of the European Conference on Computer Vision (ECCV) Workshops (2018)

    Google Scholar 

  2. Zheng, Y., Liu, D., Georgescu, B., Nguyen, H., Comaniciu, D.: 3D deep learning for efficient and robust landmark detection in volumetric data. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9349, pp. 565–572. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24553-9_69

    Chapter  Google Scholar 

  3. Zhang, J., Liu, M., Shen, D.: Detecting anatomical landmarks from limited medical imaging data using two-stage task-oriented deep neural networks. IEEE Trans. Image Process. 26(10), 4753–4764 (2017)

    Article  MathSciNet  Google Scholar 

  4. Bier, B., et al.: X-ray-transform invariant anatomical landmark detection for pelvic trauma surgery. In: Frangi, A.F., Schnabel, J.A., Davatzikos, C., Alberola-López, C., Fichtinger, G. (eds.) MICCAI 2018. LNCS, vol. 11073, pp. 55–63. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00937-3_7

    Chapter  Google Scholar 

  5. Fang, S., Raghavan, R., Richtsmeier, J.T.: Volume morphing methods for landmark-based 3D image deformation. In: Medical Imaging 1996: Image Processing, vol. 2710. International Society for Optics and Photonics (1996)

    Google Scholar 

  6. Sumner, R.W., Schmid, J., Pauly, M.: Embedded deformation for shape manipulation. In: ACM SIGGRAPH 2007 Papers, p. 80-es (2007)

    Google Scholar 

  7. Lu, X., et al.: Unsupervised articulated skeleton extraction from point set sequences captured by a single depth camera. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 32, no. 1 (2018)

    Google Scholar 

  8. Alansary, A., et al.: Evaluating reinforcement learning agents for anatomical landmark detection. Medical Image Anal. 53, 156–164 (2019)

    Article  Google Scholar 

  9. Ghesu, F.C., Georgescu, B., Grbic, S., Maier, A.K., Hornegger, J., Comaniciu, D.: Robust multi-scale anatomical landmark detection in incomplete 3D-CT Data. In: Descoteaux, M., Maier-Hein, L., Franz, A., Jannin, P., Collins, D.L., Duchesne, S. (eds.) MICCAI 2017. LNCS, vol. 10433, pp. 194–202. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66182-7_23

    Chapter  Google Scholar 

  10. Ebner, T., Stern, D., Donner, R., Bischof, H., Urschler, M.: Towards automatic bone age estimation from MRI: localization of 3D anatomical landmarks. In: Golland, P., Hata, N., Barillot, C., Hornegger, J., Howe, R. (eds.) MICCAI 2014, Part II. LNCS, vol. 8674, pp. 421–428. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10470-6_53

    Chapter  Google Scholar 

  11. Subburaj, K., Ravi, B., Agarwal, M.: Automated identification of anatomical landmarks on 3D bone models reconstructed from CT scan images. Comput. Med. Imaging Graph. 33(5), 359–368 (2009)

    Article  Google Scholar 

  12. Baek, S.-Y., et al.: Automated bone landmarks prediction on the femur using anatomical deformation technique. Comput.-Aided Design 45(2), 505–510 (2013)

    Article  Google Scholar 

  13. Li, H., et al.: Robust single-view geometry and motion reconstruction. ACM Trans. Graph. (ToG) 28(5), 1–10 (2009)

    Article  Google Scholar 

  14. Lu, X., et al.: 3D articulated skeleton extraction using a single consumer-grade depth camera. Comput. Vision Image Underst. 188, 102792 (2019)

    Google Scholar 

  15. Yao, Y., et al.: Quasi-Newton solver for robust non-rigid registration. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (2020)

    Google Scholar 

  16. Holland, P.W., Welsch, R.E.: Robust regression using iteratively reweighted least-squares. Commun. Stat.-Theory Methods 6(9), 813–827 (1977)

    Article  MATH  Google Scholar 

  17. Boyd, S., Parikh, N., Chu, E.: Distributed Optimization and Statistical Learning via the Alternating Direction Method of Multipliers. Now Publishers Inc. (2011)

    Google Scholar 

  18. Myronenko, A., Song, X.: Point set registration: coherent point drift. IEEE Trans. Pattern Anal. Mach. Intell. 32(12), 2262–2275 (2010)

    Article  Google Scholar 

  19. Dai, H., et al.: A 3D morphable model of craniofacial shape and texture variation. In: Proceedings of the IEEE International Conference on Computer Vision (2017)

    Google Scholar 

  20. Wand, M., et al.: Efficient reconstruction of nonrigid shape and motion from real-time 3D scanner data. ACM Trans. Graph. (TOG) 28(2), 1–15 (2009)

    Article  Google Scholar 

  21. Besl, P.J., McKay, N.D.: Method for registration of 3-D shapes. In: Sensor Fusion IV: Control Paradigms and Data Structures, vol. 1611. International Society for Optics and Photonics (1992)

    Google Scholar 

  22. Myronenko, A., Song, X.: On the closed-form solution of the rotation matrix arising in computer vision problems. arXiv preprint arXiv:0904.1613 (2009)

  23. Jacobson, A., et al.: libigl: a simple C++ geometry processing library (2018)

    Google Scholar 

  24. Guennebaud, G., Jacob, B., et al.: Eigen v3 (2010)

    Google Scholar 

  25. Cignoni, P., et al.: MeshLab: an open-source mesh processing tool. In: Eurographics Italian Chapter Conference (2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xuequan Lu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Fung, S., Lu, X., Mykolaitis, M., Razzak, I., Kostkevičius, G., Ozerenskis, D. (2023). Anatomical Landmarks Localization for 3D Foot Point Clouds. In: Tanveer, M., Agarwal, S., Ozawa, S., Ekbal, A., Jatowt, A. (eds) Neural Information Processing. ICONIP 2022. Lecture Notes in Computer Science, vol 13625. Springer, Cham. https://doi.org/10.1007/978-3-031-30111-7_53

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-30111-7_53

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-30110-0

  • Online ISBN: 978-3-031-30111-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics