Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

FaceMix: Transferring Local Regions for Data Augmentation in Face Recognition

  • Conference paper
  • First Online:
Neural Information Processing (ICONIP 2022)

Abstract

Augmentation strategies for image recognition based on local image patches have gained widespread popularity. Their main idea is to replace or remove some local regions of the image. The advantage of these methods is that they change part of the image and force the network to pay attention to the less significant parts, which leads to a greater generalization capacity of the network. While these methods work good for image recognition, they do not perform as well for face recognition tasks. The purpose of this work is to create augmentation specialized for face recognition and devoid of the shortcomings of previous works. We present FaceMix: a flexible face-specific data augmentation technique that transfers a local area of an image to another image. The method has two operating modes: it can generate new images within a class, and it can generate images for a class, using face data from other classes, and these two modes also could be combined. FaceMix is helping to solve the problems of class imbalance and insufficient number of images per identity. A feature of this method is that the number of possible artificial images grows quadratically with the growth of real images. Experiments on face recognition benchmarks, such as CFP-FP, AgeDB, CALFW, CPLFW, XQLFW, SLLFW, RFW and MegaFace, demonstrate the effectiveness of the proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. An, X., et al.: Partial FC: training 10 million identities on a single machine. arXiv preprint arXiv:2010.05222 (2020)

  2. Buslaev, A., Iglovikov, V.I., Khvedchenya, E., Parinov, A., Druzhinin, M., Kalinin, A.A.: Albumentations: fast and flexible image augmentations. Information 11(2), 125 (2020)

    Article  Google Scholar 

  3. Conway, D., Simon, L., Lechervy, A., Jurie, F.: Training face verification models from generated face identity data. arXiv preprint arXiv:2108.00800 (2021)

  4. Deng, J., Guo, J., Xue, N., Zafeiriou, S.: ArcFace: additive angular margin loss for deep face recognition. In: CVPR, pp. 4690–4699 (2019)

    Google Scholar 

  5. DeVries, T., Taylor, G.W.: Improved regularization of convolutional neural networks with cutout. arXiv preprint arXiv:1708.04552 (2017)

  6. Goodfellow, I.J., et al.: Generative adversarial networks. arXiv preprint arXiv:1406.2661 (2014)

  7. Guo, Y., Zhang, L., Hu, Y., He, X., Gao, J.: MS-Celeb-1M: a dataset and benchmark for large-scale face recognition. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9907, pp. 87–102. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46487-9_6

    Chapter  Google Scholar 

  8. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: CVPR (2016)

    Google Scholar 

  9. Hu, G., Peng, X., Yang, Y., Hospedales, T.M., Verbeek, J.: Frankenstein: learning deep face representations using small data. IEEE Trans. Image Process. 27(1), 293–303 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  10. Inoue, H.: Data augmentation by pairing samples for images classification. arXiv preprint arXiv:1801.02929 (2018)

  11. Kemelmacher-Shlizerman, I., Seitz, S.M., Miller, D., Brossard, E.: The MegaFace benchmark: 1 million faces for recognition at scale. In: CVPR, pp. 4873–4882 (2016)

    Google Scholar 

  12. Knoche, M., Hormann, S., Rigoll, G.: Cross-quality LFW: a database for analyzing cross-resolution image face recognition in unconstrained environments. In: FG (2021)

    Google Scholar 

  13. Moschoglou, S., Papaioannou, A., Sagonas, C., Deng, J., Kotsia, I., Zafeiriou, S.: AgeDB: the first manually collected, in-the-wild age database. In: CVPR Workshops (2017)

    Google Scholar 

  14. Park, S., Hong, Y., Heo, B., Yun, S., Choi, J.Y.: The majority can help the minority: context-rich minority oversampling for long-tailed classification. In: CVPR, pp. 6887–6896 (2022)

    Google Scholar 

  15. Ruiz, N., Chong, E., Rehg, J.M.: Fine-grained head pose estimation without keypoints. In: CVPR Workshops, pp. 2074–2083 (2018)

    Google Scholar 

  16. Sandfort, V., Yan, K., Pickhardt, P.J., Summers, R.M.: Data augmentation using generative adversarial networks (CycleGAN) to improve generalizability in CT segmentation tasks. Sci. Rep. 9(1), 1–9 (2019)

    Article  Google Scholar 

  17. Schroff, F., Kalenichenko, D., Philbin, J.: FaceNet: a unified embedding for face recognition and clustering. In: CVPR, pp. 815–823 (2015)

    Google Scholar 

  18. Sengupta, S., Chen, J.C., Castillo, C., Patel, V.M., Chellappa, R., Jacobs, D.W.: Frontal to profile face verification in the wild. In: WACV (2016)

    Google Scholar 

  19. Smirnov, E., Garaev, N., Galyuk, V., Lukyanets, E.: Prototype memory for large-scale face representation learning. IEEE Access 10, 12031–12046 (2022)

    Article  Google Scholar 

  20. Smirnov, E., Melnikov, A., Novoselov, S., Luckyanets, E., Lavrentyeva, G.: Doppelganger mining for face representation learning. In: ICCV Workshops, pp. 1916–1923 (2017)

    Google Scholar 

  21. Smirnov, E., Melnikov, A., Oleinik, A., Ivanova, E., Kalinovskiy, I., Luckyanets, E.: Hard example mining with auxiliary embeddings. In: CVPR Workshops, pp. 37–46 (2018)

    Google Scholar 

  22. Smirnov, E., et al.: Face representation learning using composite mini-batches. In: ICCV Workshops, pp. 551–559 (2019)

    Google Scholar 

  23. Summers, C., Dinneen, M.J.: Improved mixed-example data augmentation. In: WACV, pp. 1262–1270. IEEE (2019)

    Google Scholar 

  24. Sun, R., Masson, C., Hénaff, G., Thome, N., Cord, M.: Swapping semantic contents for mixing images. arXiv preprint arXiv:2205.10158 (2022)

  25. Szegedy, C., Toshev, A., Erhan, D.: Deep neural networks for object detection. In: NeurIPS, vol. 26 (2013)

    Google Scholar 

  26. Takahashi, R., Matsubara, T., Uehara, K.: Data augmentation using random image cropping and patching for deep CNNs. IEEE Trans. Circuits Syst. Video Technol. 30(9), 2917–2931 (2019)

    Article  Google Scholar 

  27. Wang, H., et al.: CosFace: large margin cosine loss for deep face recognition. In: CVPR (2018)

    Google Scholar 

  28. Wang, M., Deng, W., Hu, J., Tao, X., Huang, Y.: Racial faces in the wild: reducing racial bias by information maximization adaptation network. In: ICCV (2019)

    Google Scholar 

  29. Yun, S., Han, D., Oh, S.J., Chun, S., Choe, J., Yoo, Y.: CutMix: regularization strategy to train strong classifiers with localizable features. In: ICCV, pp. 6023–6032 (2019)

    Google Scholar 

  30. Zhang, H., et al.: Context encoding for semantic segmentation. In: CVPR, pp. 7151–7160 (2018)

    Google Scholar 

  31. Zhang, H., Cisse, M., Dauphin, Y.N., Lopez-Paz, D.: Mixup: beyond empirical risk minimization. arXiv preprint arXiv:1710.09412 (2017)

  32. Zhang, L., Huang, S., Liu, W.: Intra-class part swapping for fine-grained image classification. In: WACV, pp. 3208–3217 (2021)

    Google Scholar 

  33. Zhang, N., Deng, W.: Fine-grained LFW database. In: ICB (2016)

    Google Scholar 

  34. Zheng, T., Deng, W.: Cross-pose LFW: a database for studying cross-pose face recognition in unconstrained environments. Beijing University of Posts and Telecommunications, Technical report (2018)

    Google Scholar 

  35. Zheng, T., Deng, W., Hu, J.: Cross-age LFW: a database for studying cross-age face recognition in unconstrained environments. arXiv preprint arXiv:1708.08197 (2017)

  36. Zheng, Y., Chen, Q., Zhang, Y.: Deep learning and its new progress in object and behavior recognition. J. Image Graph. 19(2), 175–184 (2014)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nikita Garaev .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Garaev, N., Smirnov, E., Galyuk, V., Lukyanets, E. (2023). FaceMix: Transferring Local Regions for Data Augmentation in Face Recognition. In: Tanveer, M., Agarwal, S., Ozawa, S., Ekbal, A., Jatowt, A. (eds) Neural Information Processing. ICONIP 2022. Lecture Notes in Computer Science, vol 13625. Springer, Cham. https://doi.org/10.1007/978-3-031-30111-7_56

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-30111-7_56

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-30110-0

  • Online ISBN: 978-3-031-30111-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics