Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Towards Accurate Alignment and Sufficient Context in Scene Text Recognition

  • Conference paper
  • First Online:
Neural Information Processing (ICONIP 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13625))

Included in the following conference series:

  • 1150 Accesses

Abstract

Encoder-decoder framework has recently become cutting-edge in scene text recognition (STR), where most decoder networks consist of two parts: an attention model to align visual features from the encoder for each character, and a linear or LSTM-based model to predict label sequence. However, it is difficult for these attention models to obtain accurate alignment, and linear or LSTM model usually captures limited context. To emphasize the role of character feature alignment, we separate the attention alignment module from the decoder network in this work, forming an Encoder-Alignment-Decoder framework. Under this framework, we propose a deformable attention based model to accurately align visual features of each character. In this alignment model, we explicitly learn the spatial coordinate information of each character from the input reading order sequence and optimize it with learnable sampled offsets in the attention block to obtain accurate aligned features. To address the lack of context, we explore transformer-based decoder to capture global context by multi-head attention, where a mask matrix is integrated to keep attention weights focused on the relevant context during the decoding. Extensive experiments demonstrate the effectiveness of the Encoder-Alignment-Decoder framework in STR, achieving better performance than other language free methods with significant improvement on most benchmark STR datasets, and obtain the state-of-the-art performance on several datasets by integrating a language model.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Atienza, R.: Vision transformer for fast and efficient scene text recognition. In: Lladós, J., Lopresti, D., Uchida, S. (eds.) ICDAR 2021. LNCS, vol. 12821, pp. 319–334. Springer, Cham (2021)

    Chapter  Google Scholar 

  2. Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. In: ICML (2014)

    Google Scholar 

  3. Bhunia, A.K., Sain, A., Kumar, A., Ghose, S., Chowdhury, P.N., Song, Y.Z.: Joint visual semantic reasoning: multi-stage decoder for text recognition. In: ICCV, pp. 14940–14949 (2021)

    Google Scholar 

  4. Bojanowski, P., Grave, E., Joulin, A., Mikolov, T.: Enriching word vectors with subword information. In: ACL, vol. 5, pp. 135–146 (2017)

    Google Scholar 

  5. Carion, N., Massa, F., Synnaeve, G., Usunier, N., Kirillov, A., Zagoruyko, S.: End-to-end object detection with transformers. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12346, pp. 213–229. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58452-8_13

    Chapter  Google Scholar 

  6. Cheng, Z., Bai, F., Xu, Y., Zheng, G., Pu, S., Zhou, S.: Focusing attention: towards accurate text recognition in natural images. In: CVPR, pp. 5076–5084 (2017)

    Google Scholar 

  7. Cho, K., et al.: Learning phrase representations using rnn encoder-decoder for statistical machine translation. arXiv preprint arXiv:1406.1078 (2014)

  8. Fang, S., Xie, H., Wang, Y., Mao, Z., Zhang, Y.: Read like humans: Autonomous, bidirectional and iterative language modeling for scene text recognition. In: CVPR. pp. 7098–7107 (2021)

    Google Scholar 

  9. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: CVPR, pp. 770–778 (2016)

    Google Scholar 

  10. He, Y., et al.: Visual semantics allow for textual reasoning better in scene text recognition. In: AAAI, pp. 888–896 (2022)

    Google Scholar 

  11. Jaderberg, M., Simonyan, K., Vedaldi, A., Zisserman, A.: Synthetic data and artificial neural networks for natural scene text recognition. In: NIPS (2014)

    Google Scholar 

  12. Jaderberg, M., Simonyan, K., Vedaldi, A., Zisserman, A.: Reading text in the wild with convolutional neural networks. In: CVPR, pp. 1–20 (2016)

    Google Scholar 

  13. Karatzas, D., et al.: ICDAR 2015 competition on robust reading. In: ICDAR, pp. 1156–1160. IEEE (2015)

    Google Scholar 

  14. Karatzas, D., et al.: ICDAR 2013 robust reading competition. In: ICDAR, pp. 1484–1493. IEEE (2013)

    Google Scholar 

  15. Li, H., Wang, P., Shen, C., Zhang, G.: Show, attend and read: a simple and strong baseline for irregular text recognition. In: AAAI, pp. 8610–8617 (2019)

    Google Scholar 

  16. Liao, M., et al.: Scene text recognition from two-dimensional perspective. In: AAAI, pp. 8714–8721 (2019)

    Google Scholar 

  17. Lu, N., et al.: MASTER: multi-aspect non-local network for scene text recognition. Pattern Recogn. 117, 107980 (2021)

    Google Scholar 

  18. Lyu, P., Yang, Z., Leng, X., Wu, X., Li, R., Shen, X.: 2D attentional irregular scene text recognizer. arXiv preprint arXiv:1906.05708 (2019)

  19. Mishra, A., Alahari, K., Jawahar, C.: Scene text recognition using higher order language priors. In: BMVC. BMVA (2012)

    Google Scholar 

  20. Phan, T.Q., Shivakumara, P., Tian, S., Tan, C.L.: Recognizing text with perspective distortion in natural scenes. In: ICCV, pp. 569–576 (2013)

    Google Scholar 

  21. Qiao, Z., Zhou, Y., Yang, D., Zhou, Y., Wang, W.: SEED: semantics enhanced encoder-decoder framework for scene text recognition. In: CVPR, pp. 13528–13537 (2020)

    Google Scholar 

  22. Risnumawan, A., Shivakumara, P., Chan, C.S., Tan, C.L.: A robust arbitrary text detection system for natural scene images. Expert Syst. Appl. 41(18), 8027–8048 (2014)

    Article  Google Scholar 

  23. Shi, B., Bai, X., Yao, C.: An end-to-end trainable neural network for image-based sequence recognition and its application to scene text recognition. IEEE Trans. Pattern Anal. Mach. Intell. 39(11), 2298–2304 (2016)

    Article  Google Scholar 

  24. Shi, B., Yang, M., Wang, X., Lyu, P., Yao, C., Bai, X.: ASTER: an attentional scene text recognizer with flexible rectification. IEEE Trans. Pattern Anal. Mach. Intell. 41(9), 2035–2048 (2018)

    Article  Google Scholar 

  25. Tang, X., Lai, Y., Liu, Y., Fu, Y., Fang, R.: Visual-semantic transformer for scene text recognition. In: AAAI (2022)

    Google Scholar 

  26. Vaswani, A., et al.: Attention is all you need. In: NIPS, pp. 5998–6008 (2017)

    Google Scholar 

  27. Wang, K., Babenko, B., Belongie, S.: End-to-end scene text recognition. In: ICCV, pp. 1457–1464. IEEE (2011)

    Google Scholar 

  28. Wang, T., et al.: Decoupled attention network for text recognition. In: AAAI, pp. 12216–12224 (2020)

    Google Scholar 

  29. Wang, Y., Xie, H., Fang, S., Wang, J., Zhu, S., Zhang, Y.: From two to one: a new scene text recognizer with visual language modeling network. In: ICCV, pp. 14194–14203 (2021)

    Google Scholar 

  30. Xie, Z., Huang, Y., Zhu, Y., Jin, L., Liu, Y., Xie, L.: Aggregation cross-entropy for sequence recognition. In: CVPR, pp. 6538–6547 (2019)

    Google Scholar 

  31. Yang, L., Wang, P., Li, H., Li, Z., Zhang, Y.: A holistic representation guided attention network for scene text recognition. Neurocomputing 414, 67–75 (2020)

    Article  Google Scholar 

  32. Yang, X., He, D., Zhou, Z., Kifer, D., Giles, C.L.: Learning to read irregular text with attention mechanisms. In: IJCAI, vol. 1, p. 3 (2017)

    Google Scholar 

  33. Yu, D., et al.: Towards accurate scene text recognition with semantic reasoning networks. In: CVPR, pp. 12113–12122 (2020)

    Google Scholar 

  34. Zhu, X., Su, W., Lu, L., Li, B., Wang, X., Dai, J.: Deformable DETR: deformable transformers for end-to-end object detection. In: ICLR (2020)

    Google Scholar 

Download references

Acknowledgements

The work was funded by National Natural Science Foundation of China under no.61876154 and no.61876155; and Jiangsu Science and Technology Programme under no. BE2020006-4, and “Qing Lan Project” in Jiangsu universities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qiufeng Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Hu, Y., Dong, B., Wang, Q., Ding, L., Jin, X., Huang, K. (2023). Towards Accurate Alignment and Sufficient Context in Scene Text Recognition. In: Tanveer, M., Agarwal, S., Ozawa, S., Ekbal, A., Jatowt, A. (eds) Neural Information Processing. ICONIP 2022. Lecture Notes in Computer Science, vol 13625. Springer, Cham. https://doi.org/10.1007/978-3-031-30111-7_59

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-30111-7_59

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-30110-0

  • Online ISBN: 978-3-031-30111-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics