Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

WINMLP: Quantum & Involution Inspire False Positive Reduction in Lung Nodule Detection

  • Conference paper
  • First Online:
Neural Information Processing (ICONIP 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13625))

Included in the following conference series:

  • 960 Accesses

Abstract

Improving the accuracy of early diagnosis is the key to prolong the survival of lung cancer. Lung Nodule Detection algorithms based on Deep Learning have made significant contributions to improving the accuracy. However, it remains a challenge to reduce the False Positive rate while maintaining high sensitivity. In this paper, we propose a novel MLP-based False Positive Reduction network, Wave-Involution MLP. We design a progressive multi-scale fusion block based on the novel operator Involution to fuse global features preferably. Moreover, inspired by quantum theory, we design a CT-WaveMLP feature extraction backbone, which transforms CT images into wave functions and enhances feature extraction capability. We performed experiments on LUNAV2 dataset, and the results show that our network achieves the average CPM of 0.861, which has a better performance compared with mainstream methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Cascio, D., Magro, R., Fauci, F., Iacomi, M., Raso, G.: Automatic detection of lung nodules in CT datasets based on stable 3D mass-spring models. Comput. Biol. Med. 42(11), 1098–1109 (2012)

    Article  Google Scholar 

  2. Choi, W.J., Choi, T.S.: Automated pulmonary nodule detection based on three-dimensional shape-based feature descriptor. Comput. Methods Programs Biomed. 113(1), 37–54 (2014)

    Article  Google Scholar 

  3. Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., et al.: An image is worth 16 \(\times \) 16 words: transformers for image recognition at scale. In: 2020 International Conference on Learning Representations (ICLR) (2020)

    Google Scholar 

  4. Dou, Q., Chen, H., Yu, L., Qin, J., Heng, P.A.: Multilevel contextual 3-D CNNs for false positive reduction in pulmonary nodule detection. IEEE Trans. Biomed. Eng. 64(7), 1558–1567 (2016)

    Article  Google Scholar 

  5. Kim, B.C., Yoon, J.S., et al.: Multi-scale gradual integration CNN for false positive reduction in pulmonary nodule detection. Neural Netw. 115, 1–10 (2019)

    Article  Google Scholar 

  6. Lancaster, H.L., et al.: Low-dose computed tomography lung cancer screening: clinical evidence and implementation research. J. Intern. Med. 292, 68–80 (2022)

    Article  Google Scholar 

  7. Larsson, G., Maire, M., Shakhnarovich, G.: Fractalnet: ultra-deep neural networks without residuals. arXiv preprint arXiv:1605.07648 (2016)

  8. LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proc. IEEE 86(11), 2278–2324 (1998)

    Article  Google Scholar 

  9. Li, B., Liu, Y., Wang, X.: Gradient harmonized single-stage detector. In: Proceedings of the AAAI conference on artificial intelligence, vol. 33, pp. 8577–8584 (2019)

    Google Scholar 

  10. Li, D., Hu, J., Wang, C., Li, X., et al.: Involution: inverting the inherence of convolution for visual recognition. In: 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 12316–12325. IEEE (2021)

    Google Scholar 

  11. Lin, M., Chen, Q., Yan, S.: Network in network. arXiv preprint arXiv:1312.4400 (2013)

  12. Liu, D., Liu, F., Tie, Y., Qi, L., Wang, F.: Res-trans networks for lung nodule classification. Int. J. Comput. Assist. Radiol. Surg. 17, 1–10 (2022). https://doi.org/10.1007/s11548-022-02576-5

    Article  Google Scholar 

  13. Messay, T., et al.: A new computationally efficient cad system for pulmonary nodule detection in CT imagery. Med. Image Anal. 14(3), 390–406 (2010)

    Article  Google Scholar 

  14. Morgan, P.: Classical and quantum measurement theory. arXiv preprint arXiv: 2201.04667 (2022)

  15. Murchison, J.T., Ritchie, G., Senyszak, D., et al.: Validation of a deep learning computer aided system for CT based lung nodule detection, classification, and growth rate estimation in a routine clinical population. PLoS ONE 17(5), e0266799 (2022)

    Article  Google Scholar 

  16. Setio, A.A.A., Ciompi, F., Litjens, G., Gerke, P., Jacobs, C., et al.: Pulmonary nodule detection in CT images: false positive reduction using multi-view convolutional networks. IEEE Trans. Med. Imaging 35(5), 1160–1169 (2016)

    Article  Google Scholar 

  17. Setio, A.A.A., Traverso, A., et al.: Validation, comparison, and combination of algorithms for automatic detection of pulmonary nodules in computed tomography images: the luna16 challenge. Med. Image Anal. 42, 1–13 (2017)

    Article  Google Scholar 

  18. Sharma, R.: Mapping of global, regional and national incidence, mortality and mortality-to-incidence ratio of lung cancer in 2020 and 2050. Int. J. Clin. Oncol. 37, 1–11 (2022)

    Google Scholar 

  19. Sun, L., et al.: Attention-embedded complementary-stream CNN for false positive reduction in pulmonary nodule detection. Comput. Biol. Med. 133, 104357 (2021)

    Article  Google Scholar 

  20. Tang, Y., et al.: An image patch is a wave: phase-aware vision MLP. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 10935–10944 (2022)

    Google Scholar 

  21. Tolstikhin, I.O., Houlsby, N., Kolesnikov, A., et al.: MLP-mixer: an all-MLP architecture for vision. In: Advances in Neural Information Processing Systems, vol. 34 (2021)

    Google Scholar 

  22. Xie, H., Yang, et al.: Automated pulmonary nodule detection in CT images using deep convolutional neural networks. Pattern Recogn. 85, 109–119 (2019)

    Google Scholar 

  23. Zhang, H., Peng, Y., Guo, Y.: Pulmonary nodules detection based on multi-scale attention networks. Sci. Rep. 12(1), 1–14 (2022)

    Google Scholar 

  24. Zuo, W., Zhou, F., He, Y.: An embedded multi-branch 3D convolution neural network for false positive reduction in lung nodule detection. J. Digit. Imaging 33(4), 846–857 (2020)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yun Tie .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhang, Z., Liu, F., Qi, L., Tie, Y. (2023). WINMLP: Quantum & Involution Inspire False Positive Reduction in Lung Nodule Detection. In: Tanveer, M., Agarwal, S., Ozawa, S., Ekbal, A., Jatowt, A. (eds) Neural Information Processing. ICONIP 2022. Lecture Notes in Computer Science, vol 13625. Springer, Cham. https://doi.org/10.1007/978-3-031-30111-7_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-30111-7_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-30110-0

  • Online ISBN: 978-3-031-30111-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics