Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Metrics for Temporal Text Networks

  • Chapter
  • First Online:
Temporal Network Theory

Part of the book series: Computational Social Sciences ((CSS))

  • 479 Accesses

Abstract

Human communication, either online or offline, is characterized by when information is shared from one actor to the other and by what specific information is exchanged. Using text as a way to represent the exchanged information, we can represent human communication systems with a temporal text network model where actors and messages coexist in a dynamic multilayer network. In this model, actors and messages are represented in separate layers, connected by inter-layer temporal edges representing the communication acts—who and when communicate what information. In this chapter we revisit some measures specifically developed for temporal networks, and extend them to the case of temporal text networks. In particular, we focus on defining measures relevant for the analysis of information propagation, including the concepts of walk, path, temporal precedence and path distance measures. We conclude by discussing how to use the proposed measures in practice by conducting a comparative analysis in a sample communication network based on Twitter mentions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    To simplify the notation, in this chapter we are assuming that \(i \le j \Rightarrow t_i \le t_j\).

  2. 2.

    We considered only politicians who were either members of the parliament before the elections or were part of an electoral ballot.

References

  • P. Aragón, V. Gómez, D. García, A. Kaltenbrunner, Generative models of online discussion threads: state of the art and research challenges. J. Internet Serv. Appl. 8(1), 1–17 (2017)

    Article  Google Scholar 

  • J.A. Caetano, G. Magno, M. Gonçalves, J. Almeida, H.T. Marques-Neto, V. Almeida, Characterizing attention cascades in whatsapp groups, in Proceedings of the 10th ACM Conference on Web Science (2019), pp. 27–36

    Google Scholar 

  • E. Camilleri, S.J. Miah, Evaluating latent content within unstructured text: an analytical methodology based on a temporal network of associated topics. J. Big Data 8(1), 124 (2021)

    Article  Google Scholar 

  • L.R. Chai, D. Zhou, D.S. Bassett, Evolution of semantic networks in biomedical texts. J. Complex Netw. 8(1), cnz023 (2020). https://doi.org/10.1093/comnet/cnz023

  • J. Cheng, L.A. Adamic, J.M. Kleinberg, J. Leskovec, Do cascades recur? in Proceedings of the 25th International Conference on World Wide Web (International WWW Conferences Steering Committee, 2016), pp. 671–681

    Google Scholar 

  • S. Deri, J. Rappaz, L.M. Aiello, D. Quercia, Coloring in the links: capturing social ties as they are perceived. Proc. ACM Hum. Comput. Interact. 2(CSCW), 43:1–43:18 (2018)

    Google Scholar 

  • M. Dickison, M. Magnani, L. Rossi, Multilayer Social Networks (Cambridge University Press, 2016)

    Google Scholar 

  • P.S. Dodds, C.M. Danforth, Measuring the happiness of large-scale written expression: songs, blogs, and presidents. J. Happiness Stud. 11(4), 441–456 (2010)

    Article  Google Scholar 

  • L. Gauvin, A. Panisson, C. Cattuto, A. Barrat, Activity clocks: spreading dynamics on temporal networks of human contact. Sci. Rep. 3, 3099 (2013)

    Article  ADS  Google Scholar 

  • M. Gomez Rodriguez, J. Leskovec, A. Krause, Inferring networks of diffusion and influence, in Proceedings of the 16th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD ’10 (ACM, New York, NY, USA, 2010), pp. 1019–1028

    Google Scholar 

  • O. Hanteer, L. Rossi, D.V. D’Aurelio, M. Magnani, From interaction to participation: the role of the imagined audience in social media community detection and an application to political communication on twitter, in 2018 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM) (2018), pp. 531–534

    Google Scholar 

  • P. Holme, J. Saramäki, Temporal networks. Phys. Rep. 519(3), 97–125 (2012)

    Article  ADS  Google Scholar 

  • R. Interdonato, M. Atzmueller, S. Gaito, R. Kanawati, C. Largeron, A. Sala, Feature-rich networks: going beyond complex network topologies. Appl. Netw. Sci. 4(1), 4 (2019)

    Article  Google Scholar 

  • M. Karsai, M. Kivelä, R.K. Pan, K. Kaski, J. Kertész, A.L Barabási, J. Saramäki, Small but slow world: how network topology and burstiness slow down spreading. Phys. Rev. E-Stat., Nonlinear, Soft Matter Phys. 83(2) (2011)

    Google Scholar 

  • J. Kim, J. Diesner, Over-time measurement of triadic closure in coauthorship networks. Soc. Netw. Anal. Min. 7(1), 9 (2017)

    Article  Google Scholar 

  • M. Kivelä, A. Arenas, M. Barthelemy, J.P. Gleeson, Y. Moreno, M.A. Porter, Multilayer networks. J. Complex Netw. 2(3), 203–271 (2014)

    Article  Google Scholar 

  • R. Lambiotte, L. Tabourier, J.C. Delvenne, Burstiness and spreading on temporal networks. Eur. Phys. J. B 86(7), 320 (2013)

    Article  ADS  Google Scholar 

  • V. Lavrenko, M. Schmill, D. Lawrie, P. Ogilvie, D. Jensen, J. Allan, Mining of concurrent text and time series, in SIGKDD Workshop on Text Mining (2000), pp. 37–44

    Google Scholar 

  • J. Leskovec, A. Krause, C. Guestrin, C. Faloutsos, J. VanBriesen, N. Glance, Cost-effective outbreak detection in networks, in International conference on Knowledge Discovery and Data Mining (KDD) (2007), p. 420

    Google Scholar 

  • N. Luhmann, Social Systems (Stanford University Press, 1995)

    Google Scholar 

  • M. Magnani, D. Montesi, L. Rossi, Conversation retrieval from microblogging sites. Inf. Retr. J. 15(3–4) (2012)

    Google Scholar 

  • M. Magnani, A. Segerberg, On the conditions for integrating deep learning into the study of visual politics, in 13th ACM Web Science Conference (2021)

    Google Scholar 

  • B. Mathew, R. Dutt, P. Goyal, A. Mukherjee, Spread of hate speech in online social media, in Proceedings of the 10th ACM Conference on Web Science, WebSci ’19 (Association for Computing Machinery, New York, NY, USA, 2019), pp. 173–182

    Google Scholar 

  • S. Milonia, M. Mazzamurro, Temporal networks of ‘Contrafacta’ in the first three troubadour generations. Digit. Sch. Humanities fqac018 (2022)

    Google Scholar 

  • P.J. Mucha, M.A. Porter, Communities in multislice voting networks. Chaos: Interdiscip. J. Nonlinear Sci. 20(4) (2010)

    Google Scholar 

  • B. O’Connor, R. Balasubramanyan, B.R. Routledge, N.A. Smith, From tweets to polls: linking text sentiment to public opinion time series, in Proceedings of the Eleventh International Conference on Web and Social Media, ed. by W.W. Cohen, S. Gosling (The AAAI Press)

    Google Scholar 

  • S.Z. Oliva, L. Oliveira-Ciabati, D.G. Dezembro, M.S.A. Júnior, M. de Carvalho Silva, H.C. Pessotti, J.T. Pollettini, Text structuring methods based on complex network: a systematic review. Scientometrics 126(2), 1471–1493 (2021)

    Google Scholar 

  • A. Paranjape, A.R. Benson, J. Leskovec, Motifs in temporal networks, in Proceedings of the 10th ACM International Conference on Web Search and Data Mining, WSDM ’17 (ACM, New York, NY, USA, 2017), pp. 601–610

    Google Scholar 

  • F.S.F. Pereira, Caracterização da propagação de rumores no twitter utilizando redes textuais temporais, in Anais do Brazilian Workshop on Social Network Analysis and Mining (BraSNAM) (SBC, 2021), pp. 25–31

    Google Scholar 

  • C. Roth, J.P. Cointet, Social and semantic coevolution in knowledge networks. Soc. Netw. 32(1), 16–29 (2010)

    Article  Google Scholar 

  • M. Salehi, R. Sharma, M. Marzolla, M. Magnani, P. Siyari, D. Montesi, Spreading processes in multilayer networks. IEEE Trans. Netw. Sci. Eng. 2(2), 65–83 (2015)

    Article  Google Scholar 

  • P. Sapiezynski, A. Stopczynski, D.D. Lassen, S. Lehmann, Interaction data from the copenhagen networks study. Sci. Data 6(1), 1–10 (2019)

    Article  Google Scholar 

  • T.A.B. Snijders, Models for longitudinal network data, in Models and Methods in Social Network Analysis, Structural Analysis in the Social Sciences, ed. by P.J. Carrington, J. Scott, S. Wasserman (Cambridge University Press, 2005), pp. 215–247

    Google Scholar 

  • T.A.B. Snijders, Siena: statistical modeling of longitudinal network data, in Encyclopedia of Social Network Analysis and Mining (Springer New York, New York, NY, 2014), pp. 1718–1725

    Google Scholar 

  • J. St-Onge, L. Renaud-Desjardins, P. Mongeau, J. Saint-Charles, Socio-semantic networks as mutualistic networks. Sci. Rep. 12(1), 1889 (2022). Number: 1 Publisher: Nature Publishing Group

    Google Scholar 

  • J. Stehlé, N. Voirin, A. Barrat, C. Cattuto, L. Isella, J.F. Pinton, P. Vanhems, High-resolution measurements of face-to-face contact patterns in a primary school. PLoS One 6(8) (2011)

    Google Scholar 

  • L. Tamine, L. Soulier, L., Jabeur, F. Amblard, C. Hanachi, G. Hubert, C. Roth, Social media-based collaborative information access: analysis of online crisis-related twitter conversations, in HT 2016 - Proceedings of the 27th ACM Conference on Hypertext and Social Media (2016), pp. 159–168

    Google Scholar 

  • Y. Taskin, T. Hecking, H.U. Hoppe, ESA-T2N: a novel approach to network-text analysis, in Complex Networks and Their Applications VIII, Studies in Computational Intelligence. ed. by H. Cherifi, S. Gaito, J.F. Mendes, E. Moro, L.M. Rocha (Springer International Publishing, Cham, 2020), pp.129–139

    Google Scholar 

  • F. Ustek-Spilda, D. Vega, M. Magnani, L. Rossi, I. Shklovski, S. Lehuede, A. Powell, A twitter-based study of the European internet of things. Inf. Syst. Front. 23(1), 135–149 (2021)

    Article  Google Scholar 

  • L. Vadicamo, F. Carrara, A. Cimino, S. Cresci, F. Dell’Orletta, F. Falchi, M. Tesconi, Cross-media learning for image sentiment analysis in the wild, in 2017 IEEE International Conference on Computer Vision Workshops (ICCVW) (2017), pp. 308–317

    Google Scholar 

  • D. Vega, M. Magnani, Foundations of temporal text networks. Appl. Netw. Sci. 3(1), 26 (2018)

    Article  Google Scholar 

  • T. Viard, M. Latapy, C. Magnien, Computing maximal cliques in link streams. Theoret. Comput. Sci. 609(1), 245–252 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  • L. Wang, A. Yang, K. Thorson, Serial participants of social media climate discussion as a community of practice: a longitudinal network analysis. Inf., Commun. Soc. 24(7), 941–959 (2021)

    Article  Google Scholar 

Download references

Acknowledgements

We would like to thank Prof. Christian Rohner for his comments and suggestions.

This work was partially supported by the European Community through the project “Values and ethics in Innovation for Responsible Technology in Europe” (Virt-EU) funded under Horizon 2020 ICT-35-RIA call Enabling Responsible ICT-related Research and Innovation, and by eSSENCE, an e-Science collaboration funded as a strategic research area of Sweden.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matteo Magnani .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Vega, D., Magnani, M. (2023). Metrics for Temporal Text Networks. In: Holme, P., Saramäki, J. (eds) Temporal Network Theory. Computational Social Sciences. Springer, Cham. https://doi.org/10.1007/978-3-031-30399-9_8

Download citation

Publish with us

Policies and ethics