Abstract
In this paper we describe the computational framework for GPU-based molecular dynamics of turbulent flows. The framework is based on the open-source molecular dynamics library OpenMM. The implementation of a special type of open boundary conditions is presented together with a generic case of a turbulent flow of Lennard-Jones liquid. We compare the computational efficiency of OpenMM with another popular MD library LAMMPS and other legacy MD programs used for studying turbulence.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Abraham, M., et al.: GROMACS: high performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX 1–2, 19–25 (2015). https://doi.org/10.1016/j.softx.2015.06.001
Anderson, J.A., Lorenz, C.D., Travesset, A.: General purpose molecular dynamics simulations fully implemented on graphics processing units. J. Comput. Phys. 227(10), 5342–5359 (2008). https://doi.org/10.1016/j.jcp.2008.01.047
Berendsen, H., van der Spoel, D., van Drunen, R.: GROMACS: a message-passing parallel molecular dynamics implementation. Comput. Phys. Commun. 91(1), 43–56 (1995). https://doi.org/10.1016/0010-4655(95)00042-E
Brown, W.M., Kohlmeyer, A., Plimpton, S.J., Tharrington, A.N.: Implementing molecular dynamics on hybrid high performance computers – Particle-particle particle-mesh. Comput. Phys. Commun. 183(3), 449–459 (2012). https://doi.org/10.1016/j.cpc.2011.10.012
Brown, W.M., Wang, P., Plimpton, S.J., Tharrington, A.N.: Implementing molecular dynamics on hybrid high performance computers – short range forces. Comput. Phys. Commun. 182(4), 898–911 (2011). https://doi.org/10.1016/j.cpc.2010.12.021
Brown, W.M., Yamada, M.: Implementing molecular dynamics on hybrid high performance computers-three-body potentials. Comput. Phys. Commun. 184(12), 2785–2793 (2013). https://doi.org/10.1016/j.cpc.2013.08.002
Eastman, P., et al.: OpenMM 4: a reusable, extensible, hardware independent library for high performance molecular simulation. J. Chem. Theory Comput. 9(1), 461–469 (2013). https://doi.org/10.1021/ct300857j
Eastman, P., Pande, V.S.: Efficient nonbonded interactions for molecular dynamics on a graphics processing unit. J. Comput. Chem. 31, 1268–1272 (2009). https://doi.org/10.1002/jcc.21413
Eastman, P., et al.:OpenMM 7: rapid development of high performance algorithms for molecular dynamics. PLOS Comput. Biol. 13, 1–17 ( 2017). https://doi.org/10.1371/journal.pcbi.1005659
Glaser, J., et al.: Strong scaling of general-purpose molecular dynamics simulations on GPUs. Comput. Phys. Commun. 192, 97–107 (2015). https://doi.org/10.1016/j.cpc.2015.02.028
Grinberg, L., et al.: A new computational paradigm in multiscale simulations: Application to brain blood flow. In: Proceedings of 2011 International Conference for High Performance Computing, Networking, Storage and Analysis, pp. 1–5 (2011)
Hitz, T., Heinen, M., Vrabec, J., Munz, C.D.: Comparison of macro-and microscopic solutions of the riemann problem I. supercritical shock tube and expansion into vacuum. J. Comput. Phys. 402, 109077 (2020)
Hitz, T., Jöns, S., Heinen, M., Vrabec, J., Munz, C.D.: Comparison of macro-and microscopic solutions of the riemann problem II. two-phase shock tube. J. Comput Phys 429, 110027 (2021)
Johar, A.: Final HIP Platform implementation for AMD GPUs on ROCm 3338 (2021). https://github.com/openmm/openmm/pull/3338
Kadau, K., Barber, J.L., Germann, T.C., Holian, B.L., Alder, B.J.: Atomistic methods in fluid simulation. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 368(1916), 1547–1560 (2010)
Kondratyuk, N., Nikolskiy, V., Pavlov, D., Stegailov, V.: GPU-accelerated molecular dynamics: State-of-art software performance and porting from nvidia CUDA to AMD HIP. The International Journal of High Performance Computing Applications 35(4), 312–324 (2021). https://doi.org/10.1177/10943420211008288
Kostenetskiy, P., Chulkevich, R., Kozyrev, V.: HPC resources of the Higher School of Economics. J. Phys. Conf. Ser. 1740, 012050. IOP Publishing (2021)
Kutzner, C., Páll, S., Fechner, M., Esztermann, A., de Groot, B.L., Grubmüller, H.: Best bang for your buck: GPU nodes for GROMACS biomolecular simulations. J. Comput. Chem. 36(26), 1990–2008 (2015)
Kutzner, C., Páll, S., Fechner, M., Esztermann, A., de Groot, B.L., Grubmüller, H.: More bang for your buck: Improved use of GPU nodes for GROMACS 2018. J. Comput. Chem. 40(27), 2418–2431 (2019)
Moon, B., Jagadish, H., Faloutsos, C., Saltz, J.: Analysis of the clustering properties of the Hilbert space-filling curve. IEEE Trans. Knowl. Data Eng. 13(1), 124–141 (2001). https://doi.org/10.1109/69.908985
Nikolskiy, V.P., Stegailov, V.V., Vecher, V.S.: Efficiency of the Tegra K1 and X1 systems-on-chip for classical molecular dynamics. In: 2016 International Conference on High Performance Computing & Simulation (HPCS), pp. 682–689. IEEE (2016)
OpenMM team: OpenMM application layer python API http://docs.openmm.org/latest/api-python/app.html
OpenMM team: OpenMM library level C++/Python API http://docs.openmm.org/development/api-c++/
Perdikaris, P., Grinberg, L., Karniadakis, G.E.: Multiscale modeling and simulation of brain blood flow. Phys. Fluids 28(2), 021304 (2016)
Plimpton, S.: Fast parallel algorithms for short-range molecular dynamics. J. Comput. Phys. 117(1), 1–19 (1995). https://doi.org/10.1006/jcph.1995.1039
Rapaport, D.C., Clementi, E.: Eddy formation in obstructed fluid flow: A molecular-dynamics study. Phys. Rev. Lett. 57, 695–698 (1986). https://doi.org/10.1103/PhysRevLett.57.695
Shamsutdinov, A., et al.: Performance of supercomputers based on Angara interconnect and novel AMD CPUs/GPUs. In: Balandin, D., Barkalov, K., Gergel, V., Meyerov, I. (eds.) MMST 2020. CCIS, vol. 1413, pp. 401–416. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-78759-2_33
Smith, E.: A molecular dynamics simulation of the turbulent Couette minimal flow unit. Phys. Fluids 27(11), 115105 (2015)
Smith, E., Trevelyan, D., Ramos-Fernandez, E., Sufian, A., O’Sullivan, C., Dini, D.: CPL library – a minimal framework for coupled particle and continuum simulation. Comput. Phys. Commun. 250, 107068 (2020)
Stegailov, M., et al.: Angara interconnect makes GPU-based Desmos supercomputer an efficient tool for molecular dynamics calculations. Int. J. High Perform. Comput. Appl. 33(3), 507–521 (2019). https://doi.org/10.1177/1094342019826667
Tchipev, N., et al.: Twetris: twenty trillion-atom simulation. Int. J. High Perf. Comp. Appl. 0(0), 1094342018819741 (2019). https://doi.org/10.1177/1094342018819741
Thompson, A.P. et al.: LAMMPS – a flexible simulation tool for particle-based materials modeling at the atomic, meso, and continuum scales. Comput. Phys. Commun. 271, 108171 (2022)
Trott, C.R., et al.: Kokkos 3: programming model extensions for the exascale era. IEEE Trans. Parallel Distrib. Syst. 33(4), 805–817 (2022). https://doi.org/10.1109/TPDS.2021.3097283
Acknowledgment
This research was supported in part through computational resources of the Supercomputer Centre of JIHT RAS and HPC facilities at HSE University. The study was supported by the Russian Science Foundation (project no. 20-71-10127).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Pavlov, D., Kolotinskii, D., Stegailov, V. (2023). GPU-Based Molecular Dynamics of Turbulent Liquid Flows with OpenMM. In: Wyrzykowski, R., Dongarra, J., Deelman, E., Karczewski, K. (eds) Parallel Processing and Applied Mathematics. PPAM 2022. Lecture Notes in Computer Science, vol 13826. Springer, Cham. https://doi.org/10.1007/978-3-031-30442-2_26
Download citation
DOI: https://doi.org/10.1007/978-3-031-30442-2_26
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-30441-5
Online ISBN: 978-3-031-30442-2
eBook Packages: Computer ScienceComputer Science (R0)