Abstract
This work continues the exploration of the batch framework proposed in Batch Bootstrapping I (Liu and Wang, Eurocrypt 2023). By further designing novel batch homomorphic algorithms based on the batch framework, this work shows how to bootstrap \(\lambda \) LWE input ciphertexts within a polynomial modulus, using \(\tilde{O}(\lambda )\) FHE multiplications. This implies an amortized complexity \(\tilde{O}(1)\) FHE multiplications per input ciphertext, significantly improving our first work (whose amortized complexity is \(\tilde{O}(\lambda ^{0.75})\)) and the theoretical state of the art MS18 (Micciancio and Sorrell, ICALP 2018), whose amortized complexity is \(O(3^{1/\epsilon } \cdot \lambda ^{\epsilon })\), for any arbitrary constant \(\epsilon \).
We believe that all our new homomorphic algorithms might be useful in general applications, and thus can be of independent interests.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
As this is the bottom base field, no further recursive acceleration can be applied (e.g., Karatsuba or Toom-Cook).
- 2.
The term non-trivial requires \(\textsf{Batch}\mathsf {\text {-}Mult}\) to be much more efficient than the trivial non-batch computation, i.e., computing r \(\textsf{RGSW}\) multiplications separately and then packing the outcomes into one ciphertext.
- 3.
Recall that the challenge is to homomorphically rotates batch ciphertexts of modes \(``\mathcal {R}_{12} \rightarrow \mathcal {R}_{13}"\) or \(``\mathcal {R}_{13} \rightarrow \mathcal {R}_{12}"\).
References
Alperin-Sheriff, J., Peikert, C.: Faster bootstrapping with polynomial error. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014. LNCS, vol. 8616, pp. 297–314. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-44371-2_17
Bonnoron, G., Ducas, L., Fillinger, M.: Large FHE gates from tensored homomorphic accumulator. In: Joux, A., Nitaj, A., Rachidi, T. (eds.) AFRICACRYPT 2018. LNCS, vol. 10831, pp. 217–251. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-89339-6_13
Chillotti, I., Gama, N., Georgieva, M., Izabachène, M.: Faster fully homomorphic encryption: bootstrapping in less than 0.1 seconds. In: Cheon, J.H., Takagi, T. (eds.) ASIACRYPT 2016. LNCS, vol. 10031, pp. 3–33. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53887-6_1
Ducas, L., Micciancio, D.: FHEW: bootstrapping homomorphic encryption in less than a second. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol. 9056, pp. 617–640. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46800-5_24
Gentry, C.: Fully homomorphic encryption using ideal lattices. In: Mitzenmacher, M. (ed.) 41st ACM STOC, pp. 169–178. ACM Press (2009)
Gentry, C., Sahai, A., Waters, B.: Homomorphic encryption from learning with errors: conceptually-simpler, asymptotically-faster, attribute-based. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8042, pp. 75–92. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40041-4_5
Liu, F.-H., Wang, H.: Batch bootstrapping I: a new framework for simd bootstrapping in polynomial modulus. In: Eurocrypt (2023)
Lyubashevsky, V., Peikert, C., Regev, O.: On ideal lattices and learning with errors over rings. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 1–23. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13190-5_1
Lyubashevsky, V., Peikert, C., Regev, O.: A toolkit for ring-LWE cryptography. In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp. 35–54. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38348-9_3
Micciancio, D., Peikert, C.: Trapdoors for lattices: simpler, tighter, faster, smaller. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 700–718. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-29011-4_41
Micciancio, D., Sorrell, J.: Ring packing and amortized FHEW bootstrapping. In: Chatzigiannakis, I., Kaklamanis, C., Marx, D., Sannella, D. (eds.) ICALP 2018, vol. 107, pp. 100:1–100:14. Schloss Dagstuhl (2018)
Regev, O.: On lattices, learning with errors, random linear codes, and cryptography. In: Gabow, H.N., Fagin, R. (eds.) 37th ACM STOC, pp. 84–93. ACM Press (2005)
Acknowledgement
The authors would like to thank anonymous reviewers for their insightful comments that significantly help improve the presentation. Feng-Hao Liu is supported by NSF CNS-1942400. Han Wang is supported by the National Key R &D Program of China under Grant 2020YFA0712303 and State Key Laboratory of Information Security under Grant TC20221013042.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 International Association for Cryptologic Research
About this paper
Cite this paper
Liu, FH., Wang, H. (2023). Batch Bootstrapping II:. In: Hazay, C., Stam, M. (eds) Advances in Cryptology – EUROCRYPT 2023. EUROCRYPT 2023. Lecture Notes in Computer Science, vol 14006. Springer, Cham. https://doi.org/10.1007/978-3-031-30620-4_12
Download citation
DOI: https://doi.org/10.1007/978-3-031-30620-4_12
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-30619-8
Online ISBN: 978-3-031-30620-4
eBook Packages: Computer ScienceComputer Science (R0)