Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Batch Bootstrapping II:

Bootstrapping in Polynomial Modulus only Requires \(\tilde{O}(1)\) FHE Multiplications in Amortization

  • Conference paper
  • First Online:
Advances in Cryptology – EUROCRYPT 2023 (EUROCRYPT 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14006))

Abstract

This work continues the exploration of the batch framework proposed in Batch Bootstrapping I (Liu and Wang, Eurocrypt 2023). By further designing novel batch homomorphic algorithms based on the batch framework, this work shows how to bootstrap \(\lambda \) LWE input ciphertexts within a polynomial modulus, using \(\tilde{O}(\lambda )\) FHE multiplications. This implies an amortized complexity \(\tilde{O}(1)\) FHE multiplications per input ciphertext, significantly improving our first work (whose amortized complexity is \(\tilde{O}(\lambda ^{0.75})\)) and the theoretical state of the art MS18 (Micciancio and Sorrell, ICALP 2018), whose amortized complexity is \(O(3^{1/\epsilon } \cdot \lambda ^{\epsilon })\), for any arbitrary constant \(\epsilon \).

We believe that all our new homomorphic algorithms might be useful in general applications, and thus can be of independent interests.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    As this is the bottom base field, no further recursive acceleration can be applied (e.g., Karatsuba or Toom-Cook).

  2. 2.

    The term non-trivial requires \(\textsf{Batch}\mathsf {\text {-}Mult}\) to be much more efficient than the trivial non-batch computation, i.e., computing r \(\textsf{RGSW}\) multiplications separately and then packing the outcomes into one ciphertext.

  3. 3.

    Recall that the challenge is to homomorphically rotates batch ciphertexts of modes \(``\mathcal {R}_{12} \rightarrow \mathcal {R}_{13}"\) or \(``\mathcal {R}_{13} \rightarrow \mathcal {R}_{12}"\).

References

  1. Alperin-Sheriff, J., Peikert, C.: Faster bootstrapping with polynomial error. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014. LNCS, vol. 8616, pp. 297–314. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-44371-2_17

    Chapter  Google Scholar 

  2. Bonnoron, G., Ducas, L., Fillinger, M.: Large FHE gates from tensored homomorphic accumulator. In: Joux, A., Nitaj, A., Rachidi, T. (eds.) AFRICACRYPT 2018. LNCS, vol. 10831, pp. 217–251. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-89339-6_13

    Chapter  Google Scholar 

  3. Chillotti, I., Gama, N., Georgieva, M., Izabachène, M.: Faster fully homomorphic encryption: bootstrapping in less than 0.1 seconds. In: Cheon, J.H., Takagi, T. (eds.) ASIACRYPT 2016. LNCS, vol. 10031, pp. 3–33. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53887-6_1

    Chapter  MATH  Google Scholar 

  4. Ducas, L., Micciancio, D.: FHEW: bootstrapping homomorphic encryption in less than a second. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol. 9056, pp. 617–640. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46800-5_24

    Chapter  MATH  Google Scholar 

  5. Gentry, C.: Fully homomorphic encryption using ideal lattices. In: Mitzenmacher, M. (ed.) 41st ACM STOC, pp. 169–178. ACM Press (2009)

    Google Scholar 

  6. Gentry, C., Sahai, A., Waters, B.: Homomorphic encryption from learning with errors: conceptually-simpler, asymptotically-faster, attribute-based. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8042, pp. 75–92. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40041-4_5

    Chapter  Google Scholar 

  7. Liu, F.-H., Wang, H.: Batch bootstrapping I: a new framework for simd bootstrapping in polynomial modulus. In: Eurocrypt (2023)

    Google Scholar 

  8. Lyubashevsky, V., Peikert, C., Regev, O.: On ideal lattices and learning with errors over rings. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 1–23. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13190-5_1

    Chapter  Google Scholar 

  9. Lyubashevsky, V., Peikert, C., Regev, O.: A toolkit for ring-LWE cryptography. In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp. 35–54. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38348-9_3

    Chapter  Google Scholar 

  10. Micciancio, D., Peikert, C.: Trapdoors for lattices: simpler, tighter, faster, smaller. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 700–718. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-29011-4_41

    Chapter  Google Scholar 

  11. Micciancio, D., Sorrell, J.: Ring packing and amortized FHEW bootstrapping. In: Chatzigiannakis, I., Kaklamanis, C., Marx, D., Sannella, D. (eds.) ICALP 2018, vol. 107, pp. 100:1–100:14. Schloss Dagstuhl (2018)

    Google Scholar 

  12. Regev, O.: On lattices, learning with errors, random linear codes, and cryptography. In: Gabow, H.N., Fagin, R. (eds.) 37th ACM STOC, pp. 84–93. ACM Press (2005)

    Google Scholar 

Download references

Acknowledgement

The authors would like to thank anonymous reviewers for their insightful comments that significantly help improve the presentation. Feng-Hao Liu is supported by NSF CNS-1942400. Han Wang is supported by the National Key R &D Program of China under Grant 2020YFA0712303 and State Key Laboratory of Information Security under Grant TC20221013042.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Han Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 International Association for Cryptologic Research

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Liu, FH., Wang, H. (2023). Batch Bootstrapping II:. In: Hazay, C., Stam, M. (eds) Advances in Cryptology – EUROCRYPT 2023. EUROCRYPT 2023. Lecture Notes in Computer Science, vol 14006. Springer, Cham. https://doi.org/10.1007/978-3-031-30620-4_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-30620-4_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-30619-8

  • Online ISBN: 978-3-031-30620-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics