Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Efficient Laconic Cryptography from Learning with Errors

  • Conference paper
  • First Online:
Advances in Cryptology – EUROCRYPT 2023 (EUROCRYPT 2023)

Abstract

Laconic cryptography is an emerging paradigm that enables cryptographic primitives with sublinear communication complexity in just two messages. In particular, a two-message protocol between Alice and Bob is called laconic if its communication and computation complexity are essentially independent of the size of Alice’s input. This can be thought of as a dual notion of fully-homomorphic encryption, as it enables “Bob-optimized” protocols. This paradigm has led to tremendous progress in recent years. However, all existing constructions of laconic primitives are considered only of theoretical interest: They all rely on non-black-box cryptographic techniques, which are highly impractical.

This work shows that non-black-box techniques are not necessary for basic laconic cryptography primitives. We propose a completely algebraic construction of laconic encryption, a notion that we introduce in this work, which serves as the cornerstone of our framework. We prove that the scheme is secure under the standard Learning With Errors assumption (with polynomial modulus-to-noise ratio). We provide proof-of-concept implementations for the first time for laconic primitives, demonstrating the construction is indeed practical: For a database size of \(2^{50}\), encryption and decryption are in the order of single digit milliseconds.

Laconic encryption can be used as a black box to construct other laconic primitives. Specifically, we show how to construct:

  • Laconic oblivious transfer

  • Registration-based encryption scheme

  • Laconic private-set intersection protocol

All of the above have essentially optimal parameters and similar practical efficiency. Furthermore, our laconic encryption can be preprocessed such that the online encryption step is entirely combinatorial and therefore much more efficient. Using similar techniques, we also obtain identity-based encryption with an unbounded identity space and tight security proof (in the standard model).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    That is, independent or at least sublinear in n.

  2. 2.

    We denote the continuous Gaussian distribution with parameter \(\sigma \) by \(D_{\sigma }\), i.e. the probability density function of \(D_\sigma \) is proportional to \(e^{-\pi \frac{x^2}{\sigma ^2}}\).

  3. 3.

    [12] defined a similar notion of randomized \(\textbf{G} ^{-1}\), which however samples a discrete gaussian preimage.

References

  1. Agrawal, S., Boneh, D., Boyen, X.: Lattice basis delegation in fixed dimension and shorter-ciphertext hierarchical IBE. In: Rabin, T. (ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 98–115. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-14623-7_6

    Chapter  MATH  Google Scholar 

  2. Ajtai, M.: Generating hard instances of lattice problems (extended abstract). In: 28th ACM STOC, pp. 99–108. ACM Press (1996). https://doi.org/10.1145/237814.237838

  3. Alamati, N., Branco, P., Döttling, N., Garg, S., Hajiabadi, M., Pu, S.: Laconic private set intersection and applications. In: Nissim, K., Waters, B. (eds.) TCC 2021, Part III. LNCS, vol. 13044, pp. 94–125. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-90456-2_4

    Chapter  Google Scholar 

  4. Albrecht, M.R., Lai, R.W.F.: Subtractive sets over cyclotomic rings. In: Malkin, T., Peikert, C. (eds.) CRYPTO 2021, Part II. LNCS, vol. 12826, pp. 519–548. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-84245-1_18

    Chapter  Google Scholar 

  5. Alekhnovich, M.: More on average case vs approximation complexity. In: 44th FOCS, pp. 298–307. IEEE Computer Society Press (2003). https://doi.org/10.1109/SFCS.2003.1238204

  6. Alperin-Sheriff, J., Peikert, C.: Circular and KDM security for identity-based encryption. In: Fischlin, M., Buchmann, J., Manulis, M. (eds.) PKC 2012. LNCS, vol. 7293, pp. 334–352. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-30057-8_20

    Chapter  Google Scholar 

  7. Aranha, D., Lin, C., Orlandi, C., Simkin, M.: Laconic private set-intersection from pairings. Cryptology ePrint Archive, Report 2022/529 (2022). https://eprint.iacr.org/2022/529

  8. Benhamouda, F., Lin, H.: k-round multiparty computation from k-round oblivious transfer via garbled interactive circuits. In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018, Part II. LNCS, vol. 10821, pp. 500–532. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-78375-8_17

    Chapter  Google Scholar 

  9. Boneh, D., Franklin, M.: Identity-based encryption from the Weil pairing. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 213–229. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44647-8_13

    Chapter  Google Scholar 

  10. Bos, J., et al.: CRYSTALS - kyber: a CCA-secure module-lattice-based KEM. Cryptology ePrint Archive, Paper 2017/634 (2017). https://doi.org/10.1109/EuroSP.2018.00032, https://eprint.iacr.org/2017/634

  11. Boudgoust, K., Jeudy, C., Roux-Langlois, A., Wen, W.: Towards classical hardness of module-LWE: the linear rank case. In: Moriai, S., Wang, H. (eds.) ASIACRYPT 2020, Part II. LNCS, vol. 12492, pp. 289–317. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-64834-3_10

    Chapter  Google Scholar 

  12. Bourse, F., Del Pino, R., Minelli, M., Wee, H.: FHE circuit privacy almost for free. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016, Part II. LNCS, vol. 9815, pp. 62–89. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53008-5_3

    Chapter  Google Scholar 

  13. Boyen, X., Li, Q.: Towards tightly secure lattice short signature and id-based encryption. In: Cheon, J.H., Takagi, T. (eds.) ASIACRYPT 2016, Part II. LNCS, vol. 10032, pp. 404–434. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53890-6_14

    Chapter  Google Scholar 

  14. Brakerski, Z., Döttling, N.: Lossiness and entropic hardness for ring-LWE. In: Pass, R., Pietrzak, K. (eds.) TCC 2020, Part I. LNCS, vol. 12550, pp. 1–27. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-64375-1_1

    Chapter  MATH  Google Scholar 

  15. Brakerski, Z., Lombardi, A., Segev, G., Vaikuntanathan, V.: Anonymous IBE, leakage resilience and circular security from new assumptions. In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018, Part I. LNCS, vol. 10820, pp. 535–564. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-78381-9_20

    Chapter  Google Scholar 

  16. Cash, D., Hofheinz, D., Kiltz, E., Peikert, C.: Bonsai trees, or how to delegate a lattice basis. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 523–552. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13190-5_27

    Chapter  Google Scholar 

  17. Cho, C., Döttling, N., Garg, S., Gupta, D., Miao, P., Polychroniadou, A.: Laconic oblivious transfer and its applications. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017, Part II. LNCS, vol. 10402, pp. 33–65. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63715-0_2

    Chapter  Google Scholar 

  18. Döttling, N., Garg, S.: From selective IBE to full IBE and selective HIBE. In: Kalai, Y., Reyzin, L. (eds.) TCC 2017, Part I. LNCS, vol. 10677, pp. 372–408. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70500-2_13

    Chapter  Google Scholar 

  19. Döttling, N., Garg, S.: Identity-based encryption from the Diffie-Hellman assumption. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017, Part I. LNCS, vol. 10401, pp. 537–569. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63688-7_18

    Chapter  Google Scholar 

  20. Döttling, N., Garg, S., Goyal, V., Malavolta, G.: Laconic conditional disclosure of secrets and applications. In: Zuckerman, D. (ed.) 60th FOCS, pp. 661–685. IEEE Computer Society Press (2019). https://doi.org/10.1109/FOCS.2019.00046

  21. Döttling, N., Garg, S., Hajiabadi, M., Masny, D.: New constructions of identity-based and key-dependent message secure encryption schemes. In: Abdalla, M., Dahab, R. (eds.) PKC 2018, Part I. LNCS, vol. 10769, pp. 3–31. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-76578-5_1

    Chapter  MATH  Google Scholar 

  22. Döttling, N., Garg, S., Ishai, Y., Malavolta, G., Mour, T., Ostrovsky, R.: Trapdoor hash functions and their applications. In: Boldyreva, A., Micciancio, D. (eds.) CRYPTO 2019, Part III. LNCS, vol. 11694, pp. 3–32. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-26954-8_1

    Chapter  Google Scholar 

  23. Garg, S., Hajiabadi, M.: Trapdoor functions from the computational Diffie-Hellman assumption. In: Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018, Part II. LNCS, vol. 10992, pp. 362–391. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-96881-0_13

    Chapter  Google Scholar 

  24. Garg, S., Hajiabadi, M., Mahmoody, M., Rahimi, A.: Registration-based encryption: removing private-key generator from IBE. In: Beimel, A., Dziembowski, S. (eds.) TCC 2018, Part I. LNCS, vol. 11239, pp. 689–718. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-03807-6_25

    Chapter  Google Scholar 

  25. Garg, S., Hajiabadi, M., Mahmoody, M., Rahimi, A., Sekar, S.: Registration-based encryption from standard assumptions. In: Lin, D., Sako, K. (eds.) PKC 2019, Part II. LNCS, vol. 11443, pp. 63–93. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-17259-6_3

    Chapter  Google Scholar 

  26. Garg, S., Srinivasan, A.: Garbled protocols and two-round MPC from bilinear maps. In: Umans, C. (ed.) 58th FOCS, pp. 588–599. IEEE Computer Society Press (2017). https://doi.org/10.1109/FOCS.2017.60

  27. Garg, S., Srinivasan, A.: Adaptively secure garbling with near optimal online complexity. In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018, Part II. LNCS, vol. 10821, pp. 535–565. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-78375-8_18

    Chapter  Google Scholar 

  28. Garg, S., Srinivasan, A.: Two-round multiparty secure computation from minimal assumptions. In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018, Part II. LNCS, vol. 10821, pp. 468–499. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-78375-8_16

    Chapter  Google Scholar 

  29. Gentry, C.: Fully homomorphic encryption using ideal lattices. In: Mitzenmacher, M. (ed.) 41st ACM STOC, pp. 169–178. ACM Press (2009). https://doi.org/10.1145/1536414.1536440

  30. Gentry, C., Peikert, C., Vaikuntanathan, V.: Trapdoors for hard lattices and new cryptographic constructions. In: Ladner, R.E., Dwork, C. (eds.) 40th ACM STOC, pp. 197–206. ACM Press (2008). https://doi.org/10.1145/1374376.1374407

  31. Glaeser, N., Kolonelos, D., Malavolta, G., Rahimi, A.: Efficient registration-based encryption. Cryptology ePrint Archive, Paper 2022/1505 (2022). https://eprint.iacr.org/2022/1505

  32. Goldreich, O., Goldwasser, S., Halevi, S.: Collision-free hashing from lattice problems. Cryptology ePrint Archive, Report 1996/009 (1996). https://eprint.iacr.org/1996/009

  33. Goyal, R., Vusirikala, S.: Verifiable registration-based encryption. In: Micciancio, D., Ristenpart, T. (eds.) CRYPTO 2020, Part I. LNCS, vol. 12170, pp. 621–651. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-56784-2_21

    Chapter  Google Scholar 

  34. Håstad, J., Impagliazzo, R., Levin, L.A., Luby, M.: A pseudorandom generator from any one-way function. SIAM J. Comput. 28(4), 1364–1396 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  35. Hohenberger, S., Lu, G., Waters, B., Wu, D.J.: Registered attribute-based encryption. Cryptology ePrint Archive, Paper 2022/1500 (2022). https://eprint.iacr.org/2022/1500

  36. Libert, B., Ling, S., Nguyen, K., Wang, H.: Zero-knowledge arguments for lattice-based accumulators: logarithmic-size ring signatures and group signatures without trapdoors. In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT 2016, Part II. LNCS, vol. 9666, pp. 1–31. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49896-5_1

    Chapter  Google Scholar 

  37. Micciancio, D., Peikert, C.: Trapdoors for lattices: simpler, tighter, faster, smaller. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 700–718. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-29011-4_41

    Chapter  Google Scholar 

  38. O’Neill, A., Peikert, C., Waters, B.: Bi-deniable public-key encryption. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol. 6841, pp. 525–542. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22792-9_30

    Chapter  Google Scholar 

  39. Peikert, C.: An efficient and parallel Gaussian sampler for lattices. In: Rabin, T. (ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 80–97. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-14623-7_5

    Chapter  Google Scholar 

  40. Quach, W., Wee, H., Wichs, D.: Laconic function evaluation and applications. In: Thorup, M. (ed.) 59th FOCS, pp. 859–870. IEEE Computer Society Press (2018). https://doi.org/10.1109/FOCS.2018.00086

  41. Regev, O.: On lattices, learning with errors, random linear codes, and cryptography. In: Gabow, H.N., Fagin, R. (eds.) 37th ACM STOC, pp. 84–93. ACM Press (2005). https://doi.org/10.1145/1060590.1060603

  42. Yao, A.C.C.: How to generate and exchange secrets (extended abstract). In: 27th FOCS, pp. 162–167. IEEE Computer Society Press (1986). https://doi.org/10.1109/SFCS.1986.25

Download references

Acknowledgments

Nico Döttling and Chuanwei Lin: Funded by the European Union (ERC, LACONIC, 101041207). Views and opinions expressed are however those of the author(s) only and do not necessarily reflect those of the European Union or the European Research Council. Neither the European Union nor the granting authority can be held responsible for them. Giulio Malavolta and Ahmadreza Rahimi: This work was partially funded by the German Federal Ministry of Education and Research (BMBF) in the course of the 6GEM research hub under grant number 16KISK038 and by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany’s Excellence Strategy - EXC 2092 CASA - 390781972. Dimitris Kolonelos: Received funding from projects from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation program under project PICOCRYPT (grant agreement No. 101001283), from the Spanish Government under project PRODIGY (TED2021-132464B-I00), and from the Madrid Regional Government under project BLOQUES (S2018/TCS-4339). The last two projects are co-funded by European Union EIE, and NextGenerationEU/PRTR funds.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Russell W. F. Lai .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 International Association for Cryptologic Research

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Döttling, N., Kolonelos, D., Lai, R.W.F., Lin, C., Malavolta, G., Rahimi, A. (2023). Efficient Laconic Cryptography from Learning with Errors. In: Hazay, C., Stam, M. (eds) Advances in Cryptology – EUROCRYPT 2023. EUROCRYPT 2023. Lecture Notes in Computer Science, vol 14006. Springer, Cham. https://doi.org/10.1007/978-3-031-30620-4_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-30620-4_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-30619-8

  • Online ISBN: 978-3-031-30620-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics