Abstract
We introduce the Merkle Tree Ladder (MTL) mode of operation for signature schemes. MTL mode signs messages using an underlying signature scheme in such a way that the resulting signatures are condensable: a set of MTL mode signatures can be conveyed from a signer to a verifier in fewer bits than if the MTL mode signatures were sent individually. In MTL mode, the signer sends a shorter condensed signature for each message of interest and occasionally provides a longer reference value that helps the verifier process the condensed signatures. We show that in a practical scenario involving random access to an initial series of \(10{,}000\) signatures that expands gradually over time, MTL mode can reduce the size impact of the NIST PQC signature algorithms, which have signature sizes of \(666\) to \(\mathrm{49,856}\) bytes with example parameters at various security levels, to a condensed signature size of 248 to 472 bytes depending on the selected security level. Even adding the overhead of the reference values, MTL mode signatures still reduce the overall signature size impact under a range of operational assumptions. Because MTL mode itself is quantum-safe, the mode can support long-term cryptographic resiliency in applications where signature size impact is a concern without limiting cryptographic diversity only to algorithms whose signatures are naturally short.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Post-quantum cryptography standardization, NIST. https://csrc.nist.gov/projects/post-quantum-cryptography/post-quantum-cryptography-standardization. Accessed 13 Feb 2023
Alagic, G., Apon, D., Cooper, D., Dang, Q., Dang, T., Kelsey, J., et al.: NIST IR 8413-upd1: status report on the third round of the NIST post-quantum cryptography standardization process. NIST (2022); includes updates as of 26 Sept 2022. https://doi.org/10.6028/NIST.IR.8413-upd1. Accessed 13 Feb 2023
Cooper, D.A., Apon, D., Dang, Q.H., Davidson, M.S., Dworkin, M.J., Miller, C.A.: NIST special publication 800208: recommendation for stateful hash-based signature schemes. NIST (2020). https://doi.org/10.6028/NIST.SP.800-208
Announcing the Commercial National Security Algorithm suite 2.0, National Security Agency. https://media.defense.gov/2022/Sep/07/2003071834/-1/-1/0/CSA_CNSA_2.0_ALGORITHMS_.PDF. Accessed 13 Feb 2023
Migration to post-quantum cryptography. NIST National Cybersecurity Center of Excellence. https://www.nccoe.nist.gov/crypto-agility-considerations-migrating-post-quantum-cryptographic-algorithms. Accessed 13 Feb 2023
Wouters, P., Sury, O: RFC 8624, Algorithm implementation requirements and usage guidance for DNSSEC. IETF (2019). https://doi.org/10.17487/RFC8624
Cooper, D., Santesson, S., Farrell, S., Boeyen, S., Housley, R., Polk, W.: RFC 5280, Internet X.509 public key infrastructure certificate and certificate revocation list (CRL) profile. IETF (2008). https://doi.org/10.17487/RFC5280
Arends, R., Austein, R., Larson, M., Massey, D., Rose, S.: DNS security introduction and requirements. IETF (2005). https://doi.org/10.17487/RFC4033
Laurie, B., Messeri, E., Stradling, R.: RFC 9162: Certificate transparency version 2.0. IETF (2021). https://doi.org/10.17487/RFC9162
Merkle, R.: Secrecy, authentication, and public key systems. Ph.D. thesis, Stanford University (1979). http://www.ralphmerkle.com/papers/Thesis1979.pdf. Accessed 13 Feb 2023
FIPS PUB 81: DES modes of operation. National Bureau of Standards, U.S. Department of Commerce (1980). https://doi.org/10.6028/NBS.FIPS.81
Hülsing, A., Rijneveld, J., Song, F.: Mitigating multi-target attacks in hash-based signatures. In: Cheng, C.-M., Chung, K.-M., Persiano, G., Yang, B.-Y. (eds.) PKC 2016. LNCS, vol. 9614, pp. 387–416. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49384-7_15
Fluhrer, S.: Further analysis of a proposed hash-based signature standard. In: Cryptology ePrint Archive, Paper 2017/553. https://eprint.iacr.org/2017/553. Accessed 13 Feb 2023
Katz, J.: Analysis of a proposed hash-based signature standard. In: Chen, L., McGrew, D., Mitchell, C. (eds.) SSR 2016. LNCS, vol. 10074, pp. 261–273. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-49100-4_12
Grilo, A.B., Hövelmanns, K., Hülsing, A., Majenz, C.: Tight adaptive reprogramming in the QROM. In: Tibouchi, M., Wang, H. (eds.) ASIACRYPT 2021. LNCS, vol. 13090, pp. 637–667. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-92062-3_22
Bos, J.W., Hülsing, A., Renes, J., van Vredendaal, C.: Rapidly verifiable XMSS signatures, Cryptology ePrint archive, paper 2020/898. https://eprint.iacr.org/2020/898. Accessed 13 Feb 2023
Submission requirements and evaluation criteria for the post-quantum cryptography standardization process, NIST. https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/documents/call-for-proposals-final-dec-2016.pdf. Accessed 13 Feb 2023
Bai, S., Ducas, L., Kiltz, E., Lepoint, T., Lyubashevsky, V., Schwabe, P. et al.: CRYSTALS-dilithium algorithm specifications and supporting documentation (Version 3.1). 08 Feb 2021. https://pq-crystals.org/dilithium/data/dilithium-specification-round3-20210208.pdf. Accessed 13 Feb 2023
Fouque, P.-A., Hoffstein, J., Kirchner, P., Lyubashevsky, V., Pornin, T., Prest, T., et al.: Falcon: fast-Fourier lattice-based compact signatures over NTRU specification v1.2, 10 Jan 2020. https://falcon-sign.info/falcon.pdf. Accessed 13 Feb 2023
Aumasson, J.-P., Bernstein, D.J., Beullens, W., Dobraunig, C., Eichlseder, M., Fluhrer, S., et al.: SPHINCS+ submission to the NIST post-quantum project, v.3.1., 10 June 2022. https://sphincs.org/data/sphincs+-r3.1-specification.pdf. Accessed 13 Feb 2023
McGrew, D., Curcio, M., Fluhrer, S.: RFC 8554, Leighton-Micali hash-based signatures. IETF (2019). https://doi.org/10.17487/RFC8554
Huelsing, A., Butin, D., Gazdag, S., Rijneveld, J., Mohaisen, A.: RFC8391, XMSS: eXtended Merkle signature scheme. IETF (2018). https://doi.org/10.17487/RFC8391
Mockapetris, P.: RFC 1034, Domain names - concepts and facilities. IETF (1987). https://doi.org/10.17487/RFC1034
Day in the life of the internet traces, DNS-OARC. https://www.dns-oarc.net/oarc/data/catalog. Accessed 13 Feb 2023
Barker, W., Polk, W., Souppaya, M.: Getting ready for post-quantum cryptography: exploring challenges associated with adopting and using post-quantum cryptographic algorithms, NIST cybersecurity white paper. 25 April 2021. https://doi.org/10.6028/NIST.CSWP.04282021
Driscoll, F.: Terminology for post-quantum traditional hybrid schemes. https://datatracker.ietf.org/doc/draft-driscoll-pqt-hybrid-terminology. Accessed 13 Feb 2023. Work in progress
Champine, L.: Streaming Merkle proofs within binary numeral trees. In: Cryptology ePrint Archive, Paper 2021/038. https://eprint.iacr.org/2021/038. Accessed 13 Feb 2023
Crosby, S., Wallach, D.: Efficient data structures for tamper-evident logging. In: Proceedings of the 18th USENIX Security Symposium, pp. 317–334. USENIX Association (2009). https://dl.acm.org/doi/abs/10.5555/1855768.1855788
Todd, P.: Merkle mountain ranges. https://github.com/opentimestamps/opentimestamps-server/blob/master/doc/merkle-mountain-range.md. Accessed 13 Feb 2023
Bünz, B., Kiffer, L., Luu, L., Zamani, M.: FlyClient: super-light clients for cryptocurrencies. In: 2020 IEEE Symposium on Security and Privacy (SP), pp. 928–946. IEEE (2020). https://doi.org/10.1109/SP40000.2020.00049
Benaloh, J., de Mare, M.: One-way accumulators: a decentralized alternative to digital signatures. In: Helleseth, T. (ed.) EUROCRYPT 1993. LNCS, vol. 765, pp. 274–285. Springer, Heidelberg (1994). https://doi.org/10.1007/3-540-48285-7_24
Reyzin, L., Yakoubov, S.: Efficient asynchronous accumulators for distributed PKI. In: Zikas, V., De Prisco, R. (eds.) SCN 2016. LNCS, vol. 9841, pp. 292–309. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-44618-9_16
Kuszmaul, J.: Verkle trees. https://math.mit.edu/research/highschool/primes/materials/2018/Kuszmaul.pdf. Accessed 13 Feb 2023
Buterik, V.: Verkle trees (2022). https://vitalik.ca/general/2021/06/18/verkle.html. Accessed 13 Feb 2023
Catalano, D., Fiore, D.: Vector commitments and their applications. In: Kurosawa, K., Hanaoka, G. (eds.) PKC 2013. LNCS, vol. 7778, pp. 55–72. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-36362-7_5
Peikert, C., Pepin, Z., Sharp, C.: Vector and functional commitments from lattices. In: Nissim, K., Waters, B. (eds.) TCC 2021. LNCS, vol. 13044, pp. 480–511. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-90456-2_16
Ben-Sasson, E., Bentov, I., Horesh, Y., Riabzev, M.: Scalable, transparent, and post-quantum secure computational integrity. In: Cryptology ePrint Archive, Paper (2018). https://eprint.iacr.org/2018/046. Accessed 13 Feb 2023
Boneh, D., Gentry, C., Lynn, B., Shacham, H.: Aggregate and verifiably encrypted signatures from bilinear maps. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 416–432. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-39200-9_26
Khaburzaniya, I., Chalkias, K., Lewi, K., Malvai, H.: Aggregating and thresholdizing hash-based signatures using STARKs. In: Proceedings of the 2022 ACM Asia Conference on Computer and Communications Security, pp. 393–407. ACM, New York (2022). https://doi.org/10.1145/3488932.3524128
Goyal, R., Vaikuntanathan, V.: Locally verifiable signature and key aggregation. In: Dodis, Y., Shrimpton, T. (eds.) Advances in Cryptology – CRYPTO 2022, LNCS, vol. 13508, pp. 761–791. Springer , Cham (2022). https://doi.org/10.1007/978-3-031-15979-4_26
Li, F., Yi, K., Hadjieleftheriou, M., Kollios, G.: Proof-infused streams: Enabling authentication of sliding window queries on streams. In: Proceedings of the 33rd International Conference on Very Large Data Bases, pp. 147–158. VLDB Endowment (2007). https://dl.acm.org/doi/10.5555/1325851.1325871
Papamanthou, C., Shi, E., Tamassia, R., Yi, K.: Streaming authenticated data structures. In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp. 353–370. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38348-9_22
Stern, J., Pointcheval, D., Malone-Lee, J., Smart, N.P.: Flaws in applying proof methodologies to signature schemes. In: Yung, M. (ed.) CRYPTO 2002. LNCS, vol. 2442, pp. 93–110. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45708-9_7
Chase, M., Kohlweiss, M., Lysyanskaya, A., Meiklejohn, S.: Malleable signatures: new definitions and delegatable anonymous credentials. In: 2014 IEEE 27th Computer Security Foundations Symposium, pp. 199–213. IEEE (2014). https://doi.org/10.1109/CSF.2014.22
Ahn, J.H., Boneh, D., Camenisch, J., Hohenberger, S., Shelat, A., Waters, B.: Computing on authenticated data. J. Cryptol. 28(2), 351–395 (2014). https://doi.org/10.1007/s00145-014-9182-0
Attrapadung, N., Libert, B., Peters, T.: Computing on authenticated data: new privacy definitions and constructions. In: Wang, X., Sako, K. (eds.) ASIACRYPT 2012. LNCS, vol. 7658, pp. 367–385. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-34961-4_23
Decker, C., Wattenhofer, R.: Bitcoin transaction malleability and MtGox. In: Kutyłowski, M., Vaidya, J. (eds.) ESORICS 2014. LNCS, vol. 8713, pp. 313–326. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-11212-1_18
Sikeridis, D., Kampanakis, P., Devetsikiotis, M.: Post-quantum authentication in TLS 1.3: a performance study. In: Network and Distributed Systems Security (NDSS) Symposium 2020. The Internet Society (2020). https://dx.doi.org/10.14722/ndss.2020.24203
Sikeridis, D., Huntley, S., Ott, D., Devetsikiotis, M.: Intermediate certificate suppression in post-quantum TLS: an approximate membership querying approach. In: CoNEXT ’22: Proceedings of the 18th International Conference on Emerging Networking EXperiments and Technologies, pp. 35–42. ACM (2022). https://dl.acm.org/doi/abs/10.1145/3555050.3569127
Kudinov, M., Hülsing, A., Ronen, E., Yogev, E.: SPHINCS+C: compressing Sphincs+ with (almost) no cost. In: Cryptology ePrint Archive, Paper 2022/778. https://eprint.iacr.org/2022/778. Accessed 13 Feb 2023
Baldimtsi, F., Chalkias, K., Chatzigiannis, P., Kelkar, M.: Truncator: time-space tradeoff of cryptographic primitives. In: Cryptology ePrint Archive, Paper 2022/1581. https://eprint.iacr.org/2022/1581. Accessed 13 Feb 2023
Draft call for additional digital signature schemes for the post-quantum cryptography standardization process, NIST (2022). https://csrc.nist.gov/csrc/media/Projects/pqc-dig-sig/documents/call-for-proposals-dig-sig-sept-2022.pdf. Accessed 13 Feb 2023s
Acknowledgments
We thank our Verisign colleagues for reviewing drafts of this paper and discussing its concepts, with particular appreciation to Duane Wessels for guidance on the selection of data sources for Section 7.3 and assistance with the data analysis. Thanks also to DNS-OARC for providing access to their data sets and servers. Finally, the paper would not have reached its final form without the improvements encouraged by the anonymous CT-RSA reviewers. We thank them for their generous commitment to the peer review process.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Fregly, A., Harvey, J., Kaliski Jr., B.S., Sheth, S. (2023). Merkle Tree Ladder Mode: Reducing the Size Impact of NIST PQC Signature Algorithms in Practice. In: Rosulek, M. (eds) Topics in Cryptology – CT-RSA 2023. CT-RSA 2023. Lecture Notes in Computer Science, vol 13871. Springer, Cham. https://doi.org/10.1007/978-3-031-30872-7_16
Download citation
DOI: https://doi.org/10.1007/978-3-031-30872-7_16
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-30871-0
Online ISBN: 978-3-031-30872-7
eBook Packages: Computer ScienceComputer Science (R0)