Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Keyed Sum of Permutations: A Simpler RP-Based PRF

  • Conference paper
  • First Online:
Topics in Cryptology – CT-RSA 2023 (CT-RSA 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13871))

Included in the following conference series:

  • 539 Accesses

Abstract

Idealized constructions in cryptography prove the security of a primitive based on the security of another primitive. The challenge of building a pseudorandom function (PRF) from a random permutation (RP) has only been recently tackled by Chen, Lambooij and Mennink [CRYPTO 2019] who proposed Sum of Even-Mansour (SoEM) with a provable beyond-birthday-bound security. In this work, we revisit the challenge of building a PRF from an RP. On the one hand, we describe Keyed Sum of Permutations (KSoP) that achieves the same provable security as SoEM while being strictly simpler since it avoids a key addition but still requires two independent keys and permutations. On the other hand, we show that it is impossible to further simplify the scheme by deriving the two keys with a simple linear key schedule as it allows a non-trivial birthday-bound key recovery attack. The birthday-bound attack is mostly information-theoretic, but it can be optimized to run faster than a brute-force attack.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    The source code is available in https://anonymous.4open.science/r/soem-335F/README.md.

References

  1. Advanced Encryption Standard (AES). National Institute of Standards and Technology (NIST), FIPS PUB 197, U.S. Department of Commerce (2001)

    Google Scholar 

  2. Babai, L.: The Fourier transform and equations over finite abelian groups. Lecture Notes, version 1(1) (1989)

    Google Scholar 

  3. Bellare, M., Krovetz, T., Rogaway, P.: Luby-Rackoff backwards: increasing security by making block ciphers non-invertible. In: Nyberg, K. (ed.) EUROCRYPT 1998. LNCS, vol. 1403, pp. 266–280. Springer, Heidelberg (1998). https://doi.org/10.1007/BFb0054132

    Chapter  Google Scholar 

  4. Bellare, M., Rogaway, P.: The security of triple encryption and a framework for code-based game-playing proofs. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 409–426. Springer, Heidelberg (2006). https://doi.org/10.1007/11761679_25

    Chapter  Google Scholar 

  5. Bhattacharya, S., Nandi, M.: Full indifferentiable security of the XOR of two or more random permutations using the \(\chi ^2\) method. In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018. LNCS, vol. 10820, pp. 387–412. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-78381-9_15

    Chapter  Google Scholar 

  6. Bogdanov, A., Knudsen, L.R., Leander, G., Standaert, F.-X., Steinberger, J., Tischhauser, E.: Key-alternating ciphers in a provable setting: encryption using a small number of public permutations. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 45–62. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-29011-4_5

    Chapter  MATH  Google Scholar 

  7. Bouillaguet, C., Delaplace, C., Fouque, P.A.: Revisiting and improving algorithms for the 3XOR problem. IACR Trans. Symm. Cryptol. 2018(1), 254–276 (2018)

    Article  Google Scholar 

  8. Chen, S., Lampe, R., Lee, J., Seurin, Y., Steinberger, J.P.: Minimizing the two-round Even-Mansour cipher. J. Cryptol. 31(4), 1064–1119 (2018). https://doi.org/10.1007/s00145-018-9295-y

    Article  MathSciNet  MATH  Google Scholar 

  9. Chen, S., Steinberger, J.: Tight security bounds for key-alternating ciphers. In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp. 327–350. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-55220-5_19

    Chapter  Google Scholar 

  10. Chen, Y.L., Lambooij, E., Mennink, B.: How to build pseudorandom functions from public random permutations. In: Boldyreva, A., Micciancio, D. (eds.) CRYPTO 2019. LNCS, vol. 11692, pp. 266–293. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-26948-7_10

    Chapter  Google Scholar 

  11. Cogliati, B., Lampe, R., Patarin, J.: The indistinguishability of the XOR of \(k\) permutations. In: Cid, C., Rechberger, C. (eds.) FSE 2014. LNCS, vol. 8540, pp. 285–302. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46706-0_15

    Chapter  Google Scholar 

  12. Cogliati, B., Seurin, Y.: EWCDM: an efficient, beyond-birthday secure, nonce-misuse resistant MAC. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016. LNCS, vol. 9814, pp. 121–149. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53018-4_5

    Chapter  Google Scholar 

  13. Coron, J.S., Holenstein, T., Künzler, R., Patarin, J., Seurin, Y., Tessaro, S.: How to build an ideal cipher: the indifferentiability of the Feistel construction. J. Cryptol. 29(1), 61–114 (2016). https://doi.org/10.1007/s00145-014-9189-6

    Article  MathSciNet  MATH  Google Scholar 

  14. Dachman-Soled, D., Katz, J., Thiruvengadam, A.: 10-round Feistel is indifferentiable from an ideal cipher. In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT 2016. LNCS, vol. 9666, pp. 649–678. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49896-5_23

    Chapter  Google Scholar 

  15. Dai, Y., Steinberger, J.: Indifferentiability of 8-round Feistel networks. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016. LNCS, vol. 9814, pp. 95–120. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53018-4_4

    Chapter  Google Scholar 

  16. Data encryption standard: National Bureau of Standards, NBS FIPS PUB 46. U.S, Department of Commerce (1977)

    Google Scholar 

  17. Dunkelman, O., Keller, N., Shamir, A.: Minimalism in cryptography: the even-Mansour scheme revisited. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 336–354. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-29011-4_21

    Chapter  MATH  Google Scholar 

  18. Even, S., Mansour, Y.: A construction of a cipher from a single pseudorandom permutation. In: Imai, H., Rivest, R.L., Matsumoto, T. (eds.) ASIACRYPT 1991. LNCS, vol. 739, pp. 210–224. Springer, Heidelberg (1993). https://doi.org/10.1007/3-540-57332-1_17

    Chapter  Google Scholar 

  19. Gaži, P., Tessaro, S.: Secret-key cryptography from ideal primitives: a systematic overview. In: 2015 IEEE Information Theory Workshop (ITW), pp. 1–5 (2015)

    Google Scholar 

  20. Gentry, C., Ramzan, Z.: Eliminating Random permutation oracles in the even-Mansour cipher. In: Lee, P.J. (ed.) ASIACRYPT 2004. LNCS, vol. 3329, pp. 32–47. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-30539-2_3

    Chapter  MATH  Google Scholar 

  21. Iwata, T., Ohashi, K., Minematsu, K.: Breaking and repairing GCM security proofs. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 31–49. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-32009-5_3

    Chapter  Google Scholar 

  22. Jha, A., Nandi, M.: A survey on applications of h-technique: revisiting security analysis of PRP and PRF. Entropy 24(4), 462 (2022)

    Article  MathSciNet  Google Scholar 

  23. Lampe, R., Seurin, Y.: Security analysis of key-alternating Feistel ciphers. In: Cid, C., Rechberger, C. (eds.) FSE 2014. LNCS, vol. 8540, pp. 243–264. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46706-0_13

    Chapter  Google Scholar 

  24. Luby, M., Rackoff, C.: How to construct pseudorandom permutations from pseudorandom functions. SIAM J. Comput. 17(2), 373–386 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  25. Mennink, B., Neves, S.: Encrypted Davies-Meyer and its dual: towards optimal security using mirror theory. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017. LNCS, vol. 10403, pp. 556–583. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63697-9_19

    Chapter  Google Scholar 

  26. Mennink, B., Preneel, B.: On the XOR of multiple random permutations. In: Malkin, T., Kolesnikov, V., Lewko, A.B., Polychronakis, M. (eds.) ACNS 2015. LNCS, vol. 9092, pp. 619–634. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-28166-7_30

    Chapter  Google Scholar 

  27. Patarin, J.: The “Coefficients H’’ technique. In: Avanzi, R.M., Keliher, L., Sica, F. (eds.) SAC 2008. LNCS, vol. 5381, pp. 328–345. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-04159-4_21

    Chapter  Google Scholar 

  28. Pieprzyk, J.: How to construct pseudorandom permutations from single pseudorandom functions. In: Damgård, I.B. (ed.) EUROCRYPT 1990. LNCS, vol. 473, pp. 140–150. Springer, Heidelberg (1991). https://doi.org/10.1007/3-540-46877-3_12

    Chapter  Google Scholar 

  29. Shinagawa, K., Iwata, T.: Quantum attacks on sum of even-Mansour pseudorandom functions. Inf. Process. Lett. 173, 106172 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  30. Steinberger, J.P.: The sum-capture problem for abelian groups. arXiv preprint arXiv:1309.5582 (2013)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ferdinand Sibleyras .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Sibleyras, F., Todo, Y. (2023). Keyed Sum of Permutations: A Simpler RP-Based PRF. In: Rosulek, M. (eds) Topics in Cryptology – CT-RSA 2023. CT-RSA 2023. Lecture Notes in Computer Science, vol 13871. Springer, Cham. https://doi.org/10.1007/978-3-031-30872-7_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-30872-7_22

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-30871-0

  • Online ISBN: 978-3-031-30872-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics