Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Regret-Optimal Online Caching for Adversarial and Stochastic Arrivals

  • Conference paper
  • First Online:
Performance Evaluation Methodologies and Tools (VALUETOOLS 2022)

Abstract

We consider the online caching problem for a cache of limited size. In a time-slotted system, a user requests one file from a large catalog in each slot. If the requested file is cached, the policy receives a unit reward and zero rewards otherwise. We show that a Follow the Perturbed Leader (FTPL)-based anytime caching policy is simultaneously regret-optimal for both adversarial and i.i.d. stochastic arrivals. Further, in the setting where there is a cost associated with switching the cached contents, we propose a variant of FTPL that is order-optimal with respect to time for both adversarial and stochastic arrivals and has a significantly better performance compared to FTPL with respect to the switching cost for stochastic arrivals. We also show that these results can be generalized to the setting where there are constraints on the frequency with which cache contents can be changed. Finally, we validate the results obtained on various synthetic as well as real-world traces.

This work is supported by a SERB grant on Leveraging Edge Resources for Service Hosting.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 64.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 84.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. https://github.com/fathimazarin/Valuetools2022_caching/blob/main/main.pdf

  2. MovieLens 1M dataset. https://grouplens.org/datasets/movielens/. Accessed 8 Aug 2022

  3. Aggarwal, C., Wolf, J.L., Yu, P.S.: Caching on the world wide web. 125 J. Distrib. Parallel Syst. (IJDPS) 2(6), 94–107 (2000). https://doi.org/10.1109/69.755618

  4. Albers, S.: Competitive Online Algorithms. BRICS, Shanghai (1996)

    Google Scholar 

  5. Alon, N., Spencer, J.: Appendix B: Paul Erdös. John Wiley and Sons, Ltd, New York (2008). https://doi.org/10.1002/9780470277331.app2

  6. Aven, O.I., Coffman, E.G., Kogan, Y.A.: Stochastic Analysis of Computer Storage. Kluwer Academic Publishers, USA (1987)

    MATH  Google Scholar 

  7. Bhattacharjee, R., Banerjee, S., Sinha, A.: Fundamental limits of online network-caching. CoRR abs/2003.14085 (2020). https://doi.org/10.48550/arXiv.2003.14085

  8. Bura, A., Rengarajan, D., Kalathil, D., Shakkottai, S., Chamberland, J.F.: Learning to cache and caching to learn: regret analysis of caching algorithms. IEEE/ACM Trans. Netw. 30(1), 18–31 (2022). https://doi.org/10.48550/arXiv.2004.00472

  9. Cesa-Bianchi, N., Lugosi, G.: Prediction, Learning, and Games. Cambridge University Press, Cambridge (2006). https://doi.org/10.1017/CBO9780511546921

  10. Cohen, A., Hazan, T.: Following the perturbed leader for online structured learning. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, PMLR, Lille, France, vol. 37, pp. 1034–1042, 07–09 July 2015

    Google Scholar 

  11. Hannan, J.: Approximation to Bayes risk in repeated play. In: Contributions to the Theory of Games, vol. 3, no. 2, 97–139 (1957). https://doi.org/10.1515/9781400882151

  12. Harper, F.M., Konstan, J.A.: The Movielens datasets: history and context. ACM Trans. Interact. Intell. Syst. 5(4), December 2015. https://doi.org/10.1145/2827872

  13. Hoeffding, W.: Probability inequalities for sums of bounded random variables. J. Am. Stat. Assoc. 58(301), 13–30 (1963). https://doi.org/10.1080/01621459.1963.10500830

    Article  MathSciNet  MATH  Google Scholar 

  14. Kaas, R., Buhrman, J.M.: Mean, median and mode in binomial distributions. Stat. Neerl. 34(1), 13–18 (1980). https://doi.org/10.1111/j.1467-9574.1980.tb00681.x

    Article  MathSciNet  MATH  Google Scholar 

  15. Lattimore, T., Szepesvári, C.: Bandit Algorithms. Cambridge University Press, Cambridge (2020). https://doi.org/10.1017/9781108571401

  16. Littlestone, N., Warmuth, M.K.: The weighted majority algorithm. Inf. Comput. 108(2), 212–261 (1994). https://doi.org/10.1006/inco.1994.1009

    Article  MathSciNet  MATH  Google Scholar 

  17. Mourtada, J., Gaïffas, S.: On the optimality of the hedge algorithm in the stochastic regime. J. Mach. Learn. Res. 20, 1–28 (2019). https://doi.org/10.48550/arXiv.1809.01382

  18. Mukhopadhyay, S., Sinha, A.: Online caching with optimal switching regret. CoRR abs/2101.07043 (2021). https://doi.org/10.1109/ISIT45174.2021.9517925

  19. Paria, D., Sinha, A.: Leadcache: regret-optimal caching in networks. In: Thirty-Fifth Conference on Neural Information Processing Systems, vol. 34, pp. 4435–4447 (2021). https://doi.org/10.48550/arXiv.2009.08228

  20. Paschos, G.S., Destounis, A., Vigneri, L., Iosifidis, G.: Learning to cache with no regrets. In: IEEE INFOCOM 2019 - IEEE Conference on Computer Communications, pp. 235–243. IEEE Press (2019). https://doi.org/10.1109/INFOCOM.2019.8737446

  21. Silberschatz, A., Galvin, P., Gagne, G.: Operating System Principles. John Wiley & Sons, Hoboken (2006)

    Google Scholar 

  22. Starobinski, D., Tse, D.: Probabilistic methods for web caching. Perform. Eval. 46(2–3), 125–137, October 2001. https://doi.org/10.1016/S0166-5316(01)00045-1

  23. Zinkevich, M.: Online convex programming and generalized infinitesimal gradient ascent. In: Proceedings of the 20th International Conference on Machine Learning (ICML-03), pp. 928–936 (2003)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fathima Zarin Faizal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Faizal, F.Z., Singh, P., Karamchandani, N., Moharir, S. (2023). Regret-Optimal Online Caching for Adversarial and Stochastic Arrivals. In: Hyytiä, E., Kavitha, V. (eds) Performance Evaluation Methodologies and Tools. VALUETOOLS 2022. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 482. Springer, Cham. https://doi.org/10.1007/978-3-031-31234-2_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-31234-2_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-31233-5

  • Online ISBN: 978-3-031-31234-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics