Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Swarm Maneuver of Combat UGVs on the Future Digital Battlefield

  • Conference paper
  • First Online:
Modelling and Simulation for Autonomous Systems (MESAS 2022)

Abstract

The article describes the possibilities of the effective use of combat unmanned ground vehicle swarms in performing offensive tasks on the battlefield. An integral part of the effective tactical use of these robotic weapon systems is the planning of the axes of their coordinated maneuvers towards a single or group of targets. The Maneuver Control System CZ was used to calculate the axes of the offensive maneuver of the entire swarm of combat unmanned ground vehicles, which evaluates the combination of surface and terrain, weather and also the influence of enemy and friendly units deployment. The basis for the system’s calculations is a digital territory model, a digital relief model, weather forecasts, and information on the deployments of forces on both sides. The possibilities of the effective use of the Maneuver Control System CZ in planning the axes of a swarm maneuver of unmanned ground vehicles are demonstrated in three scenarios of simulated tactical situations. The calculated axes of the maneuvers were then checked in the field by an ATV.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 64.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 84.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Federated Mission Networking. NATO Allied Command Transformation. Brussels (2015). https://web.archive.org/web/20190128083216/https://www.act.nato.int/fmn

  2. Brannsten, M.R., Johnsen, F.T., Bloebaum, T.H., Lund, K.: Toward federated mission networking in the tactical domain. Commun. Mag. 53, 52–58 (2015). https://doi.org/10.1109/MCOM.2015.7295463

    Article  Google Scholar 

  3. Siegel, N.G., Madni A.M.: The digital battlefield: a behind the scenes Look from the systems perspective. Proc. Comput. Sci. 28, pp. 799–808 (2014). https://doi.org/10.1016/j.procs.2014.03.095

  4. Steen-Tveit, K., Munkvold, B.E.: From common operational picture to common situational understanding: an analysis based on practitioner perspectives. Saf. Sci. 142, 105381 (2021). https://doi.org/10.1016/j.ssci.2021.105381

  5. Sophronides, P., Papadopoulou, C., Giaoutzi, M., Scholten, H.: A common operational picture in support of situational awareness for efficient emergency response operations. J. Future Internet 2, 10–35 (2017). https://doi.org/10.18488/journal.102.2017.21.10.35

    Article  Google Scholar 

  6. Schachter, B.J.: Automatic target recognition, no. 3, p. 330. SPIE Press, Bellingham (2018). https://doi.org/10.1117/3.2315926. ISBN 9781510618572

  7. The Buzz. [Top 10 Unmanned Ground Combat Vehicles (UGCVs), Top Military Robots in the World (2019)] In: YouTube, 23 November 2019

    Google Scholar 

  8. Top 10 military robots and unmanned ground vehicles in the world. RoboticsBiz. 19 March 2020. https://roboticsbiz.com/top-10-military-robots-and-unmanned-ground-vehicles-in-the-world/

  9. Top 10 best military robots in the world, Auto journalism, Jim Carrey, 7 June 2021. https://autojournalism.com/top-10-best-military-robots-in-the-world/

  10. Feickert, A., Kapp, L., Elsea, J.K., Harris, L.A.: U.S. ground forces robotics and autonomous systems (RAS) and artificial intelligence (AI): considerations for congress, Washington D.C., pp. 47 (2018). https://digital.library.unt.edu/ark:/67531/metadc1442984/m1/

  11. Bērziņa, I., et al.: Digital infantry battlefield solution, research and innovation, part III, Milrem robotics, Tallinn, Estonia, p. 120 (2019). ISBN 978-9934-567-37-7

    Google Scholar 

  12. Andžāns, M., et al.: Digital infantry battlefield solution, introduction to ground robotics, part I, Milrem robotics, Tallinn, Estonia, p. 128 (2016). ISBN 978-9984-583-92-1

    Google Scholar 

  13. The U.S. Army Robotic and Autonomous Systems Strategy, U.S. Army Training and Doctrine Command, p. 43. Fort Eustis (2017)

    Google Scholar 

  14. Unmanned Systems Integrated Roadmap FY2017-2042, p. 58 (2017). https://www.defensedaily.com/wp-content/uploads/post_attachment/206477.pdf

  15. Harder, B.R.: Automated battle planning for combat models with maneuver and fire support, Dissertation, p. 477. Naval Postgraduate School, Monterey, California (2017)

    Google Scholar 

  16. Ivan, J., Potužák, J., Šotnar, J.: Dělostřelecká rekognoskace pro zabezpečení činnosti autonomních zbraňových systémů a základní požadavky na rekognoskační jednotky. Vojenské rozhledy 28(4), 063–077 (2019). ISSN 1210-3292 (print), pp. 2336–2995. www.vojenskerozhledy.cz, https://doi.org/10.3849/2336-2995.28.2019.04.063-077

  17. Pokonieczny, K., Rybansky, M.: Method of developing the maps of passability for unmanned ground vehicles. In: 9th IGRSM International Conference and Exhibition on Geospatial & Remote Sensing (IGRSM 2018), p. 169. IOP Conference Series: Earth and Environmental Science, Kuala Lumpur (2018). https://doi.org/10.1088/1755-1315/169/1/012027. ISSN 1755-1307

  18. Rybansky, M.: Trafficability analysis through vegetation. In: Conference Proceedings of ICMT 2017, pp. 207–210. Institute of Electrical and Electronics Engineers Inc., Piscataway (2017). https://doi.org/10.1109/MILTECHS.2017.7988757. ISBN 978-1-5386-1988-9

  19. Rada, J., Rybansky, M., Dohnal, F.: The impact of the accuracy of terrain surface data on the navigation of off-road vehicles. ISPRS Int. J. Geo-Inf. 10, 106 (2021). https://doi.org/10.3390/ijgi10030106

    Article  Google Scholar 

  20. Rada, J., Rybansky, M., Dohnal, F.: Influence of quality of remote sensing data on vegetation passability by terrain vehicles. ISPRS Int. J. Geo-Inf. 9, 684 (2020). https://doi.org/10.3390/ijgi9110684

    Article  Google Scholar 

  21. Rybansky, M.: Determination the ability of military vehicles to override vegetation. J. Terrramech. 91, 129–138 (2020). https://doi.org/10.1016/j.jterra.2020.06.004

    Article  Google Scholar 

  22. Wermelinger, M., Fankhauser, P., Diethelm, R., Krüsi, P., Siegwart, R., Hutter, M.: Navigation planning for legged robots in challenging terrain. Daejeon, South Korea, pp. 1184–1189 (2016). https://doi.org/10.1109/IROS.2016.7759199

  23. Kanoulas, D., Tsagarakis, N., Vona, M.: Curved patch mapping and tracking for irregular terrain modeling: application to bipedal robot foot placement. Robot. Auton. Syst. 13–30 (2019). https://doi.org/10.1016/j.robot.2019.05.012

  24. Li, Z., Zeng, J., Chen, S., Sreenath, K.: Vision-aided autonomous navigation of bipedal robots in height-constrained environments. arXiv e-prints (2021). arxiv:2109.05714

  25. Gilroy, S., et al.: Autonomous navigation for quadrupedal robots with optimized jumping through constrained obstacles. In: 2021 IEEE 17th International Conference on Automation Science and Engineering (CASE), pp. 2132–2139 (2021). https://doi.org/10.1109/CASE49439.2021.9551524

  26. Suryamurthy, V., Raghavan, V., Laurenzi, A., Tsagarakis, N., Kanoulas, D.: Terrain segmentation and roughness estimation using rgb data: path planning application on the CENTAURO robot. In: The 19th IEEE/RAS International Conference on Humanoid Robots, Humanoids (2019). https://doi.org/10.1109/Humanoids43949.2019.9035009

  27. Hodický, J., Castrogiovanni, R., Lo Presti, A.: Modelling and simulation challenges in the urbanized area. In: Proceedings of the 2016 17th International Conference on Mechatronics - Mechatronika (ME), pp. 429–432. Czech Technical University in Prague, Prague (2016). ISBN 978-80-01-05882-4

    Google Scholar 

  28. Hodický, J., Procházka, D.: Challenges in the implementation of autonomous systems into the battlefield. In: Proceedings of the 2017 International Conference on Military Technologies (ICMT), pp. 743–747. Institute of Electrical and Electronics Engineers Inc., Piscataway (2017). https://doi.org/10.1109/MILTECHS.2017.7988855. ISBN 978-1-5386-1988-9

  29. Braun, W.G., Nossal, K.R., Hlatky, S.: Robotics and military operations. In.: Kingston Conference on International Security, p. 77. U.S. Army War College, New York (2018). https://doi.org/10.1117/12.720422. ISBN 1-58487-780-4

  30. Tilenni, G.: Unmanned ground vehicles for combat support. European Security & Defence, pp. 74–77. Mittler Report Verlag, Bonn (2019). ISSN 1617-7983. https://euro-sd.com/2019/11/articles/15191/unmanned-ground-vehicles-for-combat-support/

  31. Nohel, J.: Possibilities of raster mathematical algorithmic models utilization as an information support of military decision making process. In: Mazal, J. (ed.) MESAS 2018. LNCS, vol. 11472, pp. 553–565. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-14984-0_41. ISSN 0302-9743, ISBN 978-3-030-14984-0

    Chapter  Google Scholar 

  32. Nohel, J., Stodola, P., Flasar, Z.: Model of the optimal maneuver route [online first], pp. 79–100. IntechOpen, London (2019). https://doi.org/10.5772/intechopen.85566. https://www.intechopen.com/online-first/model-of-the-optimal-maneuver-route

  33. Nohel, J., Flasar, Z.: Maneuver control system CZ. In: Mazal, J., Fagiolini, A., Vasik, P. (eds.) MESAS 2019. LNCS, vol. 11995, pp. 379–388. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-43890-6_31. ISBN 978-3-030-43889-0

    Chapter  Google Scholar 

  34. Hodický, J., Procházka, D., Procházka, J.: Training with and of autonomous system - modelling and simulation approach. In: Mazal, J. (ed.) MESAS 2017. LNCS, vol. 10756, pp. 383–391. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-76072-8_27. ISSN 0302-9743, ISBN 978-3-319-76071-1

    Chapter  Google Scholar 

  35. Hodicky, J., Prochazka, D.: Modelling and simulation paradigms to support autonomous system operationalization. In: Mazal, J., Fagiolini, A., Vasik, P. (eds.) MESAS 2019. LNCS, vol. 11995, pp. 361–371. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-43890-6_29. ISSN 0302-9743. ISBN 978-303043889-0

    Chapter  Google Scholar 

  36. Drozd, J., Stodola, P., Rak, L., Zahradníček, P., Hodický, J.: Effectiveness evaluation of aerial reconnaissance in battalion force protection operation using the constructive simulation. J. Defense Model. Simul. 1–15 (2021). https://doi.org/10.1177/15485129211040373. ISSN 1548-5129

  37. Zahradnicek, P., Rak, L.: Combat UGV: the challenge of their implementation in combat units. In: International Conference Knowledge-Based Organization, vol. 27, pp. 105–109 (2021). https://doi.org/10.2478/kbo-2021-0096

  38. Rak, L., Zahranicek, P., Polach, M.: The effectiveness of infantry squad combat and pre-combat formations for warfighting. In: International Conference Knowledge-Based Organization, vol. 27, no. 1, pp.106–111 (2021). https://doi.org/10.2478/kbo-2021-0017

  39. Kristalova, D., et al.: Geographical data and algorithms usable for decision-making process. In: Hodicky, J. (ed.) MESAS 2016. LNCS, vol. 9991, pp. 226–241. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-47605-6_19

    Chapter  Google Scholar 

  40. Matejka, J.: Robot as a member of combat unit – an utopia or reality for ground forces? Adv. Milit. Technol. 15(1), 7–24 (2019). https://doi.org/10.3849/aimt.01332

    Article  Google Scholar 

  41. Vichore, H., Gurumurthi, J., Nair, A., Choudhary, M., Ladge, L.: Self driven UGV for military requirements. In: Saini, H.S., Sayal, R., Govardhan, A., Buyya, R. (eds.) Innovations in Computer Science and Engineering. LNNS, vol. 171, pp. 87–98. Springer, Singapore (2021). https://doi.org/10.1007/978-981-33-4543-0_11

    Chapter  Google Scholar 

  42. Thoresen, M., Nielsen, N.H., Mathiassen, K., Pettersen, K.Y.: Path planning for UGVs based on traversability hybrid A*. IEEE Robot. Autom. Lett. 6(2), 1216–1223 (2021). https://doi.org/10.1109/LRA.2021.3056028

    Article  Google Scholar 

  43. Stolfi, D.H., Brust, M., Danoy, G., Bouvry, P.: UAV-UGV-UMV multi-swarms for cooperative surveillance. Front. Robot. AI 8, 1–11 (2021). https://doi.org/10.3389/frobt.2021.616950

    Article  Google Scholar 

  44. Nohel, J., Stodola, P., Flasar, Z.: Combat UGV support of company task force operations. In: Mazal, J., Fagiolini, A., Vasik, P., Turi, M. (eds.) MESAS 2020. LNCS, vol. 12619, pp. 29–42. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-70740-8_3. ISBN 978-3-030-70739-2

    Chapter  Google Scholar 

  45. Wang, M., Chang, J., Zhang, J.: A review of digital relief generation techniques. In: ICCET 2010 - 2010 International Conference on Computer Engineering and Technology, Proceedings, p. 4 (2010). https://doi.org/10.1109/ICCET.2010.5485636

  46. Hirt, C.: Digital terrain models. In: Grafarend, E. (eds.) Encyclopedia of Geodesy, pp. 1–6. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-02370-0_31-1

  47. Galin, E., et al.: A review of digital terrain modeling. Comput. Graph. Forum. 38(2), 553–577 (2019). https://doi.org/10.1111/cgf.13657

    Article  Google Scholar 

  48. Stodola, P., Mazal, J.: Tactical decision support system to aid commanders in their decision-making. In: Hodicky, J. (ed.) MESAS 2016. LNCS, vol. 9991, pp. 396–406. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-47605-6_32. ISBN 978-3-319-47605-6

    Chapter  Google Scholar 

  49. Risald, R., Mirino, A., Suyoto, S.: Best routes selection using Dijkstra and Floyd-Warshall algorithm, pp. 155–158. Indonesia, Surabaya (2017). https://doi.org/10.1109/ICTS.2017.8265662

  50. Pradhan, A., Kumar, M.G.: Finding all-pairs shortest path for a large-scale transportation network using parallel Floyd-Warshall and parallel Dijkstra algorithms. J. Comput. Civ. Eng. 27(3), 263–273 (2013). https://doi.org/10.1061/(ASCE)CP.1943-5487.0000220

  51. Stodola, P., Mazal, J.: Planning algorithm and its modifications for tactical decision support systems. Int. J. Math. Comput. Simul. 6(1), pp. 99–106 (2012). ISSN 1998-0159. http://www.naun.org/journals/mcs/17-474.pdf

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan Nohel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Nohel, J., Stodola, P., Flasar, Z., Křišťálová, D., Zahradníček, P., Rak, L. (2023). Swarm Maneuver of Combat UGVs on the Future Digital Battlefield. In: Mazal, J., et al. Modelling and Simulation for Autonomous Systems. MESAS 2022. Lecture Notes in Computer Science, vol 13866. Springer, Cham. https://doi.org/10.1007/978-3-031-31268-7_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-31268-7_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-31267-0

  • Online ISBN: 978-3-031-31268-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics