Abstract
The article describes the possibilities of the effective use of combat unmanned ground vehicle swarms in performing offensive tasks on the battlefield. An integral part of the effective tactical use of these robotic weapon systems is the planning of the axes of their coordinated maneuvers towards a single or group of targets. The Maneuver Control System CZ was used to calculate the axes of the offensive maneuver of the entire swarm of combat unmanned ground vehicles, which evaluates the combination of surface and terrain, weather and also the influence of enemy and friendly units deployment. The basis for the system’s calculations is a digital territory model, a digital relief model, weather forecasts, and information on the deployments of forces on both sides. The possibilities of the effective use of the Maneuver Control System CZ in planning the axes of a swarm maneuver of unmanned ground vehicles are demonstrated in three scenarios of simulated tactical situations. The calculated axes of the maneuvers were then checked in the field by an ATV.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Federated Mission Networking. NATO Allied Command Transformation. Brussels (2015). https://web.archive.org/web/20190128083216/https://www.act.nato.int/fmn
Brannsten, M.R., Johnsen, F.T., Bloebaum, T.H., Lund, K.: Toward federated mission networking in the tactical domain. Commun. Mag. 53, 52–58 (2015). https://doi.org/10.1109/MCOM.2015.7295463
Siegel, N.G., Madni A.M.: The digital battlefield: a behind the scenes Look from the systems perspective. Proc. Comput. Sci. 28, pp. 799–808 (2014). https://doi.org/10.1016/j.procs.2014.03.095
Steen-Tveit, K., Munkvold, B.E.: From common operational picture to common situational understanding: an analysis based on practitioner perspectives. Saf. Sci. 142, 105381 (2021). https://doi.org/10.1016/j.ssci.2021.105381
Sophronides, P., Papadopoulou, C., Giaoutzi, M., Scholten, H.: A common operational picture in support of situational awareness for efficient emergency response operations. J. Future Internet 2, 10–35 (2017). https://doi.org/10.18488/journal.102.2017.21.10.35
Schachter, B.J.: Automatic target recognition, no. 3, p. 330. SPIE Press, Bellingham (2018). https://doi.org/10.1117/3.2315926. ISBN 9781510618572
The Buzz. [Top 10 Unmanned Ground Combat Vehicles (UGCVs), Top Military Robots in the World (2019)] In: YouTube, 23 November 2019
Top 10 military robots and unmanned ground vehicles in the world. RoboticsBiz. 19 March 2020. https://roboticsbiz.com/top-10-military-robots-and-unmanned-ground-vehicles-in-the-world/
Top 10 best military robots in the world, Auto journalism, Jim Carrey, 7 June 2021. https://autojournalism.com/top-10-best-military-robots-in-the-world/
Feickert, A., Kapp, L., Elsea, J.K., Harris, L.A.: U.S. ground forces robotics and autonomous systems (RAS) and artificial intelligence (AI): considerations for congress, Washington D.C., pp. 47 (2018). https://digital.library.unt.edu/ark:/67531/metadc1442984/m1/
Bērziņa, I., et al.: Digital infantry battlefield solution, research and innovation, part III, Milrem robotics, Tallinn, Estonia, p. 120 (2019). ISBN 978-9934-567-37-7
Andžāns, M., et al.: Digital infantry battlefield solution, introduction to ground robotics, part I, Milrem robotics, Tallinn, Estonia, p. 128 (2016). ISBN 978-9984-583-92-1
The U.S. Army Robotic and Autonomous Systems Strategy, U.S. Army Training and Doctrine Command, p. 43. Fort Eustis (2017)
Unmanned Systems Integrated Roadmap FY2017-2042, p. 58 (2017). https://www.defensedaily.com/wp-content/uploads/post_attachment/206477.pdf
Harder, B.R.: Automated battle planning for combat models with maneuver and fire support, Dissertation, p. 477. Naval Postgraduate School, Monterey, California (2017)
Ivan, J., Potužák, J., Šotnar, J.: Dělostřelecká rekognoskace pro zabezpečení činnosti autonomních zbraňových systémů a základní požadavky na rekognoskační jednotky. Vojenské rozhledy 28(4), 063–077 (2019). ISSN 1210-3292 (print), pp. 2336–2995. www.vojenskerozhledy.cz, https://doi.org/10.3849/2336-2995.28.2019.04.063-077
Pokonieczny, K., Rybansky, M.: Method of developing the maps of passability for unmanned ground vehicles. In: 9th IGRSM International Conference and Exhibition on Geospatial & Remote Sensing (IGRSM 2018), p. 169. IOP Conference Series: Earth and Environmental Science, Kuala Lumpur (2018). https://doi.org/10.1088/1755-1315/169/1/012027. ISSN 1755-1307
Rybansky, M.: Trafficability analysis through vegetation. In: Conference Proceedings of ICMT 2017, pp. 207–210. Institute of Electrical and Electronics Engineers Inc., Piscataway (2017). https://doi.org/10.1109/MILTECHS.2017.7988757. ISBN 978-1-5386-1988-9
Rada, J., Rybansky, M., Dohnal, F.: The impact of the accuracy of terrain surface data on the navigation of off-road vehicles. ISPRS Int. J. Geo-Inf. 10, 106 (2021). https://doi.org/10.3390/ijgi10030106
Rada, J., Rybansky, M., Dohnal, F.: Influence of quality of remote sensing data on vegetation passability by terrain vehicles. ISPRS Int. J. Geo-Inf. 9, 684 (2020). https://doi.org/10.3390/ijgi9110684
Rybansky, M.: Determination the ability of military vehicles to override vegetation. J. Terrramech. 91, 129–138 (2020). https://doi.org/10.1016/j.jterra.2020.06.004
Wermelinger, M., Fankhauser, P., Diethelm, R., Krüsi, P., Siegwart, R., Hutter, M.: Navigation planning for legged robots in challenging terrain. Daejeon, South Korea, pp. 1184–1189 (2016). https://doi.org/10.1109/IROS.2016.7759199
Kanoulas, D., Tsagarakis, N., Vona, M.: Curved patch mapping and tracking for irregular terrain modeling: application to bipedal robot foot placement. Robot. Auton. Syst. 13–30 (2019). https://doi.org/10.1016/j.robot.2019.05.012
Li, Z., Zeng, J., Chen, S., Sreenath, K.: Vision-aided autonomous navigation of bipedal robots in height-constrained environments. arXiv e-prints (2021). arxiv:2109.05714
Gilroy, S., et al.: Autonomous navigation for quadrupedal robots with optimized jumping through constrained obstacles. In: 2021 IEEE 17th International Conference on Automation Science and Engineering (CASE), pp. 2132–2139 (2021). https://doi.org/10.1109/CASE49439.2021.9551524
Suryamurthy, V., Raghavan, V., Laurenzi, A., Tsagarakis, N., Kanoulas, D.: Terrain segmentation and roughness estimation using rgb data: path planning application on the CENTAURO robot. In: The 19th IEEE/RAS International Conference on Humanoid Robots, Humanoids (2019). https://doi.org/10.1109/Humanoids43949.2019.9035009
Hodický, J., Castrogiovanni, R., Lo Presti, A.: Modelling and simulation challenges in the urbanized area. In: Proceedings of the 2016 17th International Conference on Mechatronics - Mechatronika (ME), pp. 429–432. Czech Technical University in Prague, Prague (2016). ISBN 978-80-01-05882-4
Hodický, J., Procházka, D.: Challenges in the implementation of autonomous systems into the battlefield. In: Proceedings of the 2017 International Conference on Military Technologies (ICMT), pp. 743–747. Institute of Electrical and Electronics Engineers Inc., Piscataway (2017). https://doi.org/10.1109/MILTECHS.2017.7988855. ISBN 978-1-5386-1988-9
Braun, W.G., Nossal, K.R., Hlatky, S.: Robotics and military operations. In.: Kingston Conference on International Security, p. 77. U.S. Army War College, New York (2018). https://doi.org/10.1117/12.720422. ISBN 1-58487-780-4
Tilenni, G.: Unmanned ground vehicles for combat support. European Security & Defence, pp. 74–77. Mittler Report Verlag, Bonn (2019). ISSN 1617-7983. https://euro-sd.com/2019/11/articles/15191/unmanned-ground-vehicles-for-combat-support/
Nohel, J.: Possibilities of raster mathematical algorithmic models utilization as an information support of military decision making process. In: Mazal, J. (ed.) MESAS 2018. LNCS, vol. 11472, pp. 553–565. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-14984-0_41. ISSN 0302-9743, ISBN 978-3-030-14984-0
Nohel, J., Stodola, P., Flasar, Z.: Model of the optimal maneuver route [online first], pp. 79–100. IntechOpen, London (2019). https://doi.org/10.5772/intechopen.85566. https://www.intechopen.com/online-first/model-of-the-optimal-maneuver-route
Nohel, J., Flasar, Z.: Maneuver control system CZ. In: Mazal, J., Fagiolini, A., Vasik, P. (eds.) MESAS 2019. LNCS, vol. 11995, pp. 379–388. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-43890-6_31. ISBN 978-3-030-43889-0
Hodický, J., Procházka, D., Procházka, J.: Training with and of autonomous system - modelling and simulation approach. In: Mazal, J. (ed.) MESAS 2017. LNCS, vol. 10756, pp. 383–391. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-76072-8_27. ISSN 0302-9743, ISBN 978-3-319-76071-1
Hodicky, J., Prochazka, D.: Modelling and simulation paradigms to support autonomous system operationalization. In: Mazal, J., Fagiolini, A., Vasik, P. (eds.) MESAS 2019. LNCS, vol. 11995, pp. 361–371. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-43890-6_29. ISSN 0302-9743. ISBN 978-303043889-0
Drozd, J., Stodola, P., Rak, L., Zahradníček, P., Hodický, J.: Effectiveness evaluation of aerial reconnaissance in battalion force protection operation using the constructive simulation. J. Defense Model. Simul. 1–15 (2021). https://doi.org/10.1177/15485129211040373. ISSN 1548-5129
Zahradnicek, P., Rak, L.: Combat UGV: the challenge of their implementation in combat units. In: International Conference Knowledge-Based Organization, vol. 27, pp. 105–109 (2021). https://doi.org/10.2478/kbo-2021-0096
Rak, L., Zahranicek, P., Polach, M.: The effectiveness of infantry squad combat and pre-combat formations for warfighting. In: International Conference Knowledge-Based Organization, vol. 27, no. 1, pp.106–111 (2021). https://doi.org/10.2478/kbo-2021-0017
Kristalova, D., et al.: Geographical data and algorithms usable for decision-making process. In: Hodicky, J. (ed.) MESAS 2016. LNCS, vol. 9991, pp. 226–241. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-47605-6_19
Matejka, J.: Robot as a member of combat unit – an utopia or reality for ground forces? Adv. Milit. Technol. 15(1), 7–24 (2019). https://doi.org/10.3849/aimt.01332
Vichore, H., Gurumurthi, J., Nair, A., Choudhary, M., Ladge, L.: Self driven UGV for military requirements. In: Saini, H.S., Sayal, R., Govardhan, A., Buyya, R. (eds.) Innovations in Computer Science and Engineering. LNNS, vol. 171, pp. 87–98. Springer, Singapore (2021). https://doi.org/10.1007/978-981-33-4543-0_11
Thoresen, M., Nielsen, N.H., Mathiassen, K., Pettersen, K.Y.: Path planning for UGVs based on traversability hybrid A*. IEEE Robot. Autom. Lett. 6(2), 1216–1223 (2021). https://doi.org/10.1109/LRA.2021.3056028
Stolfi, D.H., Brust, M., Danoy, G., Bouvry, P.: UAV-UGV-UMV multi-swarms for cooperative surveillance. Front. Robot. AI 8, 1–11 (2021). https://doi.org/10.3389/frobt.2021.616950
Nohel, J., Stodola, P., Flasar, Z.: Combat UGV support of company task force operations. In: Mazal, J., Fagiolini, A., Vasik, P., Turi, M. (eds.) MESAS 2020. LNCS, vol. 12619, pp. 29–42. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-70740-8_3. ISBN 978-3-030-70739-2
Wang, M., Chang, J., Zhang, J.: A review of digital relief generation techniques. In: ICCET 2010 - 2010 International Conference on Computer Engineering and Technology, Proceedings, p. 4 (2010). https://doi.org/10.1109/ICCET.2010.5485636
Hirt, C.: Digital terrain models. In: Grafarend, E. (eds.) Encyclopedia of Geodesy, pp. 1–6. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-02370-0_31-1
Galin, E., et al.: A review of digital terrain modeling. Comput. Graph. Forum. 38(2), 553–577 (2019). https://doi.org/10.1111/cgf.13657
Stodola, P., Mazal, J.: Tactical decision support system to aid commanders in their decision-making. In: Hodicky, J. (ed.) MESAS 2016. LNCS, vol. 9991, pp. 396–406. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-47605-6_32. ISBN 978-3-319-47605-6
Risald, R., Mirino, A., Suyoto, S.: Best routes selection using Dijkstra and Floyd-Warshall algorithm, pp. 155–158. Indonesia, Surabaya (2017). https://doi.org/10.1109/ICTS.2017.8265662
Pradhan, A., Kumar, M.G.: Finding all-pairs shortest path for a large-scale transportation network using parallel Floyd-Warshall and parallel Dijkstra algorithms. J. Comput. Civ. Eng. 27(3), 263–273 (2013). https://doi.org/10.1061/(ASCE)CP.1943-5487.0000220
Stodola, P., Mazal, J.: Planning algorithm and its modifications for tactical decision support systems. Int. J. Math. Comput. Simul. 6(1), pp. 99–106 (2012). ISSN 1998-0159. http://www.naun.org/journals/mcs/17-474.pdf
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Nohel, J., Stodola, P., Flasar, Z., Křišťálová, D., Zahradníček, P., Rak, L. (2023). Swarm Maneuver of Combat UGVs on the Future Digital Battlefield. In: Mazal, J., et al. Modelling and Simulation for Autonomous Systems. MESAS 2022. Lecture Notes in Computer Science, vol 13866. Springer, Cham. https://doi.org/10.1007/978-3-031-31268-7_12
Download citation
DOI: https://doi.org/10.1007/978-3-031-31268-7_12
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-31267-0
Online ISBN: 978-3-031-31268-7
eBook Packages: Computer ScienceComputer Science (R0)