Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Convolution Filter Equivariance/Invariance in Convolutional Neural Networks: A Survey

  • Conference paper
  • First Online:
Pan-African Conference on Artificial Intelligence (PanAfriCon AI 2022)

Abstract

Models parameterized by Convolutional Neural Networks (CNNs), reportedly, have garnered a commanding position in learning based multidimensional signal processing. This feat is achieved to a large extent through the translation equivariance property of the convolutional filters employed. While popular, the required optimum level of model parameters, the limited availability of signal datasets, robustness of the model to input signal transformations, and generalization to out of distribution signal sets are some of the challenges of CNN models. The incorporation of equivariance or consistency to symmetry transformations in which invariance is a special case, have been suggested to not only alleviate these challenges but also bring about model interpretability. This work presents a systematic survey of the equivariant convolutional filter design for convolutional neural networks in image processing applications with the aim of bringing forth design methods in terms of group theory, discrete Fourier transform, discrete cosine transform, and wavelet transform. The theoretical foundations for translation, rotation, scale and affine equivariance under nonlinear transform, their efficient implementations especially in natural image processing applications has been thoroughly discussed.

Supported by DAAD and HAWK.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 64.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 84.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Learning Steerable Filters for Rotation Equivariant CNNs (2018). https://doi.org/10.1109/CVPR.2018.00095

  2. Achille, A., Soatto, S.: Emergence of invariance and disentanglement in deep representations. J. Mach. Learn. Res. 19(1), 1947–1980 (2018)

    MathSciNet  MATH  Google Scholar 

  3. Azulay, A., Weiss, Y.: Why do deep convolutional networks generalize so poorly to small image transformations? J. Mach. Learn. Res. 20(184), 1–25 (2019)

    MathSciNet  MATH  Google Scholar 

  4. Bietti, A., Mairal, J.: Group invariance, stability to deformations, and complexity of deep convolutional representations. J. Mach. Learn. Res. 20(1), 876–924 (2019). https://doi.org/10.5555/3322706.3322731

    Article  MathSciNet  MATH  Google Scholar 

  5. Bulusu, S., Favoni, M., Ipp, A., Müller, D.I., Schuh, D.: Generalization capabilities of translationally equivariant neural networks. Phys. Rev. D 104, 074504 (2021). https://doi.org/10.1103/PhysRevD.104.074504

    Article  Google Scholar 

  6. Chaman, A., Dokmanić, I.: Truly shift-invariant convolutional neural networks. In: 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3772–3782 (2021)

    Google Scholar 

  7. Cheng, G., Han, J., Zhou, P., Xu, D.: Learning rotation-invariant and fisher discriminative convolutional neural networks for object detection. IEEE Trans. Image Process. 28, 265–278 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  8. Cheng, X., Qiu, Q., Calderbank, R., Sapiro, G.: RotDCF: decomposition of convolutional filters for rotation-equivariant deep networks. In: International Conference on Learning Representations (ICLR 2019) (2019)

    Google Scholar 

  9. Cheoi, K.J., Choi, H., Ko, J.: Empirical remarks on the translational equivariance of convolutional layers. Appl. Sci. (2020)

    Google Scholar 

  10. Chidester, B., Zhou, T., Do, M.N., Ma, J.: Rotation equivariant and invariant neural networks for microscopy image analysis. Bioinformatics 35, i530–i537 (2019)

    Article  Google Scholar 

  11. Cohen, T., Geiger, M., Weiler, M.: A general theory of equivariant CNNs on homogeneous spaces. arXiv abs/1811.02017 (2019)

    Google Scholar 

  12. Cohen, T., Welling, M.: Group equivariant convolutional networks. In: ICML (2016)

    Google Scholar 

  13. Dalal, N., Triggs, B.: Histograms of oriented gradients for human detection. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition, CVPR 2005, vol. 1, pp. 886–893 (2005). https://doi.org/10.1109/CVPR.2005.177

  14. Elesedy, B., Zaidi, S.: Provably strict generalisation benefit for equivariant models. In: Meila, M., Zhang, T. (eds.) Proceedings of the 38th International Conference on Machine Learning, ICML 2021, 18–24 July 2021, Virtual Event. Proceedings of Machine Learning Research, vol. 139, pp. 2959–2969. PMLR (2021)

    Google Scholar 

  15. Finzi, M., Stanton, S., Izmailov, P., Wilson, A.G.: Generalizing convolutional neural networks for equivariance to lie groups on arbitrary continuous data. In: ICML (2020)

    Google Scholar 

  16. Fukushima, K.: Neocognitron: a self-organizing neural network model for a mechanism of pattern recognition unaffected by shift in position. Biol. Cybern. 36, 193–202 (1980)

    Article  MATH  Google Scholar 

  17. Gao, L.M., Lin, G., Zhu, W.: Deformation robust roto-scale-translation equivariant CNNs. arXiv abs/2111.10978 (2021)

    Google Scholar 

  18. Ghosh-Dastidar, S., Adeli, H.: Spiking neural networks. Int. J. Neural Syst. 19(04), 295–308 (2009)

    Article  Google Scholar 

  19. Hinton, G.E., Osindero, S., Teh, Y.W.: A fast learning algorithm for deep belief nets. Neural Comput. 18, 1527–1554 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  20. Hubel, D.H., Wiesel, T.N.: Receptive fields of single neurons in the cat’s striate cortex. J. Physiol. 148, 574–591 (1959)

    Article  Google Scholar 

  21. Ibenthal, A., et al.: AI algorithms for crop disease management under small database training conditions. In: International Conference on Climate Resilient Agriculture for Food Security and Sustainability, Hisar, India (2023)

    Google Scholar 

  22. Islam, M.A., Kowal, M., Jia, S., Derpanis, K.G., Bruce, N.B.: Global pooling, more than meets the eye: position information is encoded channel-wise in CNNs. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), Los Alamitos, CA, USA, pp. 773–781. IEEE Computer Society (2021). https://doi.org/10.1109/ICCV48922.2021.00083

  23. Kayhan, O.S., van Gemert, J.C.: On translation invariance in CNNs: convolutional layers can exploit absolute spatial location. In: CVPR (2020)

    Google Scholar 

  24. Kondor, R., Trivedi, S.: On the generalization of equivariance and convolution in neural networks to the action of compact groups. arXiv abs/1802.03690 (2018)

    Google Scholar 

  25. Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolutional neural networks. In: Pereira, F., Burges, C.J.C., Bottou, L., Weinberger, K.Q. (eds.) Advances in Neural Information Processing Systems, vol. 25, pp. 1097–1105. Curran Associates, Inc. (2012)

    Google Scholar 

  26. LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. In: Proceedings of the IEEE, vol. 86, pp. 2278–2324 (1998)

    Google Scholar 

  27. Li, Q., Shen, L., Guo, S., Lai, Z.: WaveCNet: wavelet integrated CNNs to suppress aliasing effect for noise-robust image classification. IEEE Trans. Image Process. 30, 7074–7089 (2021)

    Article  MathSciNet  Google Scholar 

  28. Li, Z., Yang, W., Peng, S., Liu, F.: A survey of convolutional neural networks: analysis, applications, and prospects. IEEE Trans. Neural Netw. Learn. Syst. (2021)

    Google Scholar 

  29. Lowe, D.G.: Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vis. 60(2), 91–110 (2004). https://doi.org/10.1023/B:VISI.0000029664.99615.94

    Article  Google Scholar 

  30. Lyle, C., Wilk, M., Kwiatkowska, M., Gal, Y., Bloem-Reddy, B.: On the benefits of invariance in neural networks (2020). https://arxiv.org/abs/2005.00178

  31. McGreivy, N., Hakim, A.: Convolutional layers are not translation equivariant. arXiv abs/2206.04979 (2022)

    Google Scholar 

  32. Murase, R., Suganuma, M., Okatani, T.: How can CNNs use image position for segmentation? arXiv abs/2005.03463 (2020)

    Google Scholar 

  33. Murray, J.J., Marcos, D., Tuia, D.: Zoom in, zoom out: injecting scale invariance into landuse classification CNNs. In: 2019 IEEE International Geoscience and Remote Sensing Symposium, IGARSS 2019, pp. 5240–5243 (2019)

    Google Scholar 

  34. Naderi, H., Goli, L., Kasaei, S.: Scale equivariant CNNs with scale steerable filters. In: 2020 International Conference on Machine Vision and Image Processing (MVIP), pp. 1–5 (2020). https://doi.org/10.1109/MVIP49855.2020.9116889

  35. Olah, C., Cammarata, N., Voss, C., Schubert, L., Goh, G.: Naturally occurring equivariance in neural networks. Distill (2020). https://doi.org/10.23915/distill.00024.004

  36. Patrick, M.K., Adekoya, A.F., Mighty, A.A., Edward, B.Y.: Capsule networks - a survey. J. King Saud Univ. Comput. Inf. Sci. 34, 1295–1310 (2022)

    Google Scholar 

  37. Qi, G.J., Wang, X.: Learning generalized transformation equivariant representations via autoencoding transformations. IEEE Trans. Pattern Anal. Mach. Intell. 44, 2045–2057 (2022)

    Article  Google Scholar 

  38. Rixen, J., et al.: A rotational invariant neural network for electrical impedance tomography imaging without reference voltage: RF-REIM-NET. Diagnostics 12 (2022)

    Google Scholar 

  39. Romero, D.W., Bekkers, E.J., Tomczak, J.M., Hoogendoorn, M.: Wavelet networks: scale equivariant learning from raw waveforms. arXiv abs/2006.05259 (2020)

    Google Scholar 

  40. Sharifzadeh, M., Benali, H., Rivaz, H.: Shift-invariant segmentation in breast ultrasound images. In: 2021 IEEE International Ultrasonics Symposium (IUS), pp. 1–4 (2021)

    Google Scholar 

  41. Sun, Z., Li, J., Fan, J.: Convolutional neural filtering for intelligent communications signal processing in harsh environments. IEEE Access 9, 8212–8219 (2021). https://doi.org/10.1109/ACCESS.2021.3049950

    Article  Google Scholar 

  42. Ulicny, M., Krylov, V.A., Dahyot, R.: Harmonic convolutional networks based on discrete cosine transform. Pattern Recogn. 129, 108707 (2022)

    Article  Google Scholar 

  43. Veeling, B.S., Linmans, J., Winkens, J., Cohen, T., Welling, M.: Rotation equivariant CNNs for digital pathology. In: Frangi, A.F., Schnabel, J.A., Davatzikos, C., Alberola-López, C., Fichtinger, G. (eds.) MICCAI 2018. LNCS, vol. 11071, pp. 210–218. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00934-2_24

    Chapter  Google Scholar 

  44. Worrall, D.E., Garbin, S.J., Turmukhambetov, D., Brostow, G.J.: Harmonic networks: deep translation and rotation equivariance. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 7168–7177 (2017)

    Google Scholar 

  45. Xie, Q., Zhao, Q., Xu, Z., Meng, D.: Fourier series expansion based filter parametrization for equivariant convolutions. IEEE Trans. Pattern Anal. Mach. Intell. (2022)

    Google Scholar 

  46. Xu, R., Wang, X., Chen, K., Zhou, B., Loy, C.C.: Positional encoding as spatial inductive bias in GANs. In: 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 13564–13573 (2021)

    Google Scholar 

  47. Zafar, A., et al.: A comparison of pooling methods for convolutional neural networks. Appl. Sci. (2022)

    Google Scholar 

  48. Zeiler, M.D., Fergus, R.: Stochastic pooling for regularization of deep convolutional neural networks. In: Bengio, Y., LeCun, Y. (eds.) 1st International Conference on Learning Representations, ICLR 2013, Scottsdale, Arizona, USA, 2–4 May 2013, Conference Track Proceedings (2013)

    Google Scholar 

  49. Zhang, R.: Making convolutional networks shift-invariant again. In: Chaudhuri, K., Salakhutdinov, R. (eds.) Proceedings of the 36th International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 97, pp. 7324–7334. PMLR (2019)

    Google Scholar 

  50. Zhu, W., Qiu, Q., Calderbank, A.R., Sapiro, G., Cheng, X.: Scale-equivariant neural networks with decomposed convolutional filters. arXiv abs/1909.11193 (2019)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sinshaw Bekele Habte .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Habte, S.B., Ibenthal, A., Bekele, E.T., Debelee, T.G. (2023). Convolution Filter Equivariance/Invariance in Convolutional Neural Networks: A Survey. In: Girma Debelee, T., Ibenthal, A., Schwenker, F. (eds) Pan-African Conference on Artificial Intelligence. PanAfriCon AI 2022. Communications in Computer and Information Science, vol 1800. Springer, Cham. https://doi.org/10.1007/978-3-031-31327-1_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-31327-1_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-31326-4

  • Online ISBN: 978-3-031-31327-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics