Abstract
Learning about the birds improve the understanding of the world, and provides valuable information about the natural world. To assess the quality of the living environment, accurate data on the species of birds is important. Birds species classification and identification is a difficult task, even for expert biologists and ornithologists. The unavailability of experts, along with human limitations, further pose an upper limit on manual identification of birds and their species. Using an automated approach to identify birds and their species could be a significantly important idea in this scenario. In this paper, we evaluate several deep learning based models including SSD, YOLOv4 and YOLOv5 for birds species classification and identification. All the models are evaluated on publicly available CUB-200-2011 dataset. The YOLOv4 model outperforms the recent state-of-art methods with 95.43% accuracy, 93.94% precision, 94.34% recall and 94.27% F-1 score for 20 classes, along with 96.99% mAP score.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Alter, A.L., Wang, K.M.: An exploration of computer vision techniques for bird species classification (2017)
Atanbori, J., Duan, W., Shaw, E., Appiah, K., Dickinson, P.: Classification of bird species from video using appearance and motion features. Ecol. Inform. 48, 12ā23 (2018)
Bochkovskiy, A., Wang, C.-Y., Mark Liao, H.-Y.: YOLOV4: optimal speed and accuracy of object detection. arXiv preprint arXiv:2004.10934 (2020)
Branson, S., Van Horn, G., Belongie, S., Perona, P.: Bird species categorization using pose normalized deep convolutional nets. arXiv preprint arXiv:1406.2952 (2014)
Gavali, P., Saira Banu, J.: Bird species identification using deep learning on GPU platform. In: 2020 International Conference on Emerging Trends in Information Technology and Engineering (ic-ETITE), pp. 1ā6. IEEE (2020)
Gregory, R.: Birds as biodiversity indicators for Europe. Significance 3(3), 106ā110 (2006)
He, K., Zhang, X., Ren, S., Sun, J.: Spatial pyramid pooling in deep convolutional networks for visual recognition. IEEE Trans. Pattern Anal. Mach. Intell. 37(9), 1904ā1916 (2015)
He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770ā778 (2016)
Islam, S., Khan, S.I.A., Abedin, M.M., Habibullah, K.M., Das, A.K.: Bird species classification from an image using VGG-16 network. In: Proceedings of the 2019 7th International Conference on Computer and Communications Management, pp. 38ā42 (2019)
Koh, C.-Y., Chang, J.-Y., Tai, C.-L., Huang, D.-Y., Hsieh, H.-H., Liu, Y.-W.: Bird sound classification using convolutional neural networks. In: CLEF (Working Notes) (2019)
Kumar, A., Das, S.D.: Bird species classification using transfer learning with multistage training. In: Arora, C., Mitra, K. (eds.) WCVA 2018. CCIS, vol. 1019, pp. 28ā38. Springer, Singapore (2019). https://doi.org/10.1007/978-981-15-1387-9_3
Kumar, S., Dhoundiyal, V., Raj, N., Sharma, N.: A comparison of different techniques used for classification of bird species from images. Smart Sustain. Intel. Syst., 41ā50 (2021)
Liu, S., Qi, L., Qin, H., Shi, J., Jia, J.: Path aggregation network for instance segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 8759ā8768 (2018)
Marini, A., Facon, J., Koerich, A.L.: Bird species classification based on color features. In: 2013 IEEE International Conference on Systems, Man, and Cybernetics, pp. 4336ā4341. IEEE (2013)
Marini, A., Turatti, A.J., Britto, A.S., Koerich., A.L.: Visual and acoustic identification of bird species. In: 2015 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 2309ā2313. IEEE (2015)
Pang, C., Yao, H., Sun, X.: Discriminative features for bird species classification. In: Proceedings of International Conference on Internet Multimedia Computing and Service, pp. 256ā260 (2014)
Piczak, K.J.: Recognizing bird species in audio recordings using deep convolutional neural networks. In: CLEF (working notes), pp. 534ā543 (2016)
Pillai, S.K., Raghuwanshi, M.M., Shrawankar, U.: Deep learning neural network for identification of bird species. In: Peng, S.-L., Dey, N., Bundele, M. (eds.) Computing and Network Sustainability. LNNS, vol. 75, pp. 291ā298. Springer, Singapore (2019). https://doi.org/10.1007/978-981-13-7150-9_31
Redmon, J., Divvala, S., Girshick, R., Farhadi, A.: You only look once: unified, real-time object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 779ā788 (2016)
Redmon, J., Farhadi, A.: YOLO9000: better, faster, stronger. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7263ā7271 (2017)
Redmon, J., Farhadi, A.: YOLOv3: an incremental improvement. arXiv preprint arXiv:1804.02767 (2018)
Ren, S., He, K., Girshick, R., Sun, J.: Faster R-CNN: towards real-time object detection with region proposal networks. In: Advances in Neural Information Processing Systems, vol. 28 (2015)
Sandler, M., Howard, A., Zhu, M., Zhmoginov, A., Chen, L.-C.: MobileNetv2: inverted residuals and linear bottlenecks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4510ā4520 (2018)
ÅekercioÄlu, Ć.H., Primack, R.B., Wormworth, J.: The effects of climate change on tropical birds. Biol. Conserv. 148(1), 1ā18 (2012)
Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., Wojna, Z.: Rethinking the inception architecture for computer vision. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2818ā2826 (2016)
Tzutalin, D.: tzutalin/labelimg (2015)
Wah, C., Branson, S., Welinder, P., Perona, P., Belongie, S.: The caltech-ucsd birds-200-2011 dataset (2011)
Woo, S., Park, J., Lee, J.-Y., Kweon, I.S.: CBAM: convolutional block attention module. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 3ā19 (2018)
Xie, J., Kai, H., Zhu, M., Jinghu, Yu., Zhu, Q.: Investigation of different CNN-based models for improved bird sound classification. IEEE Access 7, 175353ā175361 (2019)
Yoshihashi, R., Kawakami, R., Iida, M., Naemura, T.: Bird detection and species classification with time-lapse images around a wind farm: dataset construction and evaluation. Wind Energy 20(12), 1983ā1995 (2017)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
Ā© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Kumar, M., Yadav, A.K., Kumar, M., Yadav, D. (2023). Bird Species Classification fromĀ Images Using Deep Learning. In: Gupta, D., Bhurchandi, K., Murala, S., Raman, B., Kumar, S. (eds) Computer Vision and Image Processing. CVIP 2022. Communications in Computer and Information Science, vol 1777. Springer, Cham. https://doi.org/10.1007/978-3-031-31417-9_30
Download citation
DOI: https://doi.org/10.1007/978-3-031-31417-9_30
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-31416-2
Online ISBN: 978-3-031-31417-9
eBook Packages: Computer ScienceComputer Science (R0)