Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Bird Species Classification fromĀ Images Using Deep Learning

  • Conference paper
  • First Online:
Computer Vision and Image Processing (CVIP 2022)

Abstract

Learning about the birds improve the understanding of the world, and provides valuable information about the natural world. To assess the quality of the living environment, accurate data on the species of birds is important. Birds species classification and identification is a difficult task, even for expert biologists and ornithologists. The unavailability of experts, along with human limitations, further pose an upper limit on manual identification of birds and their species. Using an automated approach to identify birds and their species could be a significantly important idea in this scenario. In this paper, we evaluate several deep learning based models including SSD, YOLOv4 and YOLOv5 for birds species classification and identification. All the models are evaluated on publicly available CUB-200-2011 dataset. The YOLOv4 model outperforms the recent state-of-art methods with 95.43% accuracy, 93.94% precision, 94.34% recall and 94.27% F-1 score for 20 classes, along with 96.99% mAP score.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Alter, A.L., Wang, K.M.: An exploration of computer vision techniques for bird species classification (2017)

    Google ScholarĀ 

  2. Atanbori, J., Duan, W., Shaw, E., Appiah, K., Dickinson, P.: Classification of bird species from video using appearance and motion features. Ecol. Inform. 48, 12ā€“23 (2018)

    ArticleĀ  Google ScholarĀ 

  3. Bochkovskiy, A., Wang, C.-Y., Mark Liao, H.-Y.: YOLOV4: optimal speed and accuracy of object detection. arXiv preprint arXiv:2004.10934 (2020)

  4. Branson, S., Van Horn, G., Belongie, S., Perona, P.: Bird species categorization using pose normalized deep convolutional nets. arXiv preprint arXiv:1406.2952 (2014)

  5. Gavali, P., Saira Banu, J.: Bird species identification using deep learning on GPU platform. In: 2020 International Conference on Emerging Trends in Information Technology and Engineering (ic-ETITE), pp. 1ā€“6. IEEE (2020)

    Google ScholarĀ 

  6. Gregory, R.: Birds as biodiversity indicators for Europe. Significance 3(3), 106ā€“110 (2006)

    ArticleĀ  MathSciNetĀ  Google ScholarĀ 

  7. He, K., Zhang, X., Ren, S., Sun, J.: Spatial pyramid pooling in deep convolutional networks for visual recognition. IEEE Trans. Pattern Anal. Mach. Intell. 37(9), 1904ā€“1916 (2015)

    ArticleĀ  Google ScholarĀ 

  8. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770ā€“778 (2016)

    Google ScholarĀ 

  9. Islam, S., Khan, S.I.A., Abedin, M.M., Habibullah, K.M., Das, A.K.: Bird species classification from an image using VGG-16 network. In: Proceedings of the 2019 7th International Conference on Computer and Communications Management, pp. 38ā€“42 (2019)

    Google ScholarĀ 

  10. Koh, C.-Y., Chang, J.-Y., Tai, C.-L., Huang, D.-Y., Hsieh, H.-H., Liu, Y.-W.: Bird sound classification using convolutional neural networks. In: CLEF (Working Notes) (2019)

    Google ScholarĀ 

  11. Kumar, A., Das, S.D.: Bird species classification using transfer learning with multistage training. In: Arora, C., Mitra, K. (eds.) WCVA 2018. CCIS, vol. 1019, pp. 28ā€“38. Springer, Singapore (2019). https://doi.org/10.1007/978-981-15-1387-9_3

    ChapterĀ  Google ScholarĀ 

  12. Kumar, S., Dhoundiyal, V., Raj, N., Sharma, N.: A comparison of different techniques used for classification of bird species from images. Smart Sustain. Intel. Syst., 41ā€“50 (2021)

    Google ScholarĀ 

  13. Liu, S., Qi, L., Qin, H., Shi, J., Jia, J.: Path aggregation network for instance segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 8759ā€“8768 (2018)

    Google ScholarĀ 

  14. Marini, A., Facon, J., Koerich, A.L.: Bird species classification based on color features. In: 2013 IEEE International Conference on Systems, Man, and Cybernetics, pp. 4336ā€“4341. IEEE (2013)

    Google ScholarĀ 

  15. Marini, A., Turatti, A.J., Britto, A.S., Koerich., A.L.: Visual and acoustic identification of bird species. In: 2015 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 2309ā€“2313. IEEE (2015)

    Google ScholarĀ 

  16. Pang, C., Yao, H., Sun, X.: Discriminative features for bird species classification. In: Proceedings of International Conference on Internet Multimedia Computing and Service, pp. 256ā€“260 (2014)

    Google ScholarĀ 

  17. Piczak, K.J.: Recognizing bird species in audio recordings using deep convolutional neural networks. In: CLEF (working notes), pp. 534ā€“543 (2016)

    Google ScholarĀ 

  18. Pillai, S.K., Raghuwanshi, M.M., Shrawankar, U.: Deep learning neural network for identification of bird species. In: Peng, S.-L., Dey, N., Bundele, M. (eds.) Computing and Network Sustainability. LNNS, vol. 75, pp. 291ā€“298. Springer, Singapore (2019). https://doi.org/10.1007/978-981-13-7150-9_31

    ChapterĀ  Google ScholarĀ 

  19. Redmon, J., Divvala, S., Girshick, R., Farhadi, A.: You only look once: unified, real-time object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 779ā€“788 (2016)

    Google ScholarĀ 

  20. Redmon, J., Farhadi, A.: YOLO9000: better, faster, stronger. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7263ā€“7271 (2017)

    Google ScholarĀ 

  21. Redmon, J., Farhadi, A.: YOLOv3: an incremental improvement. arXiv preprint arXiv:1804.02767 (2018)

  22. Ren, S., He, K., Girshick, R., Sun, J.: Faster R-CNN: towards real-time object detection with region proposal networks. In: Advances in Neural Information Processing Systems, vol. 28 (2015)

    Google ScholarĀ 

  23. Sandler, M., Howard, A., Zhu, M., Zhmoginov, A., Chen, L.-C.: MobileNetv2: inverted residuals and linear bottlenecks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4510ā€“4520 (2018)

    Google ScholarĀ 

  24. Şekercioğlu, Ƈ.H., Primack, R.B., Wormworth, J.: The effects of climate change on tropical birds. Biol. Conserv. 148(1), 1ā€“18 (2012)

    ArticleĀ  Google ScholarĀ 

  25. Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., Wojna, Z.: Rethinking the inception architecture for computer vision. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2818ā€“2826 (2016)

    Google ScholarĀ 

  26. Tzutalin, D.: tzutalin/labelimg (2015)

    Google ScholarĀ 

  27. Wah, C., Branson, S., Welinder, P., Perona, P., Belongie, S.: The caltech-ucsd birds-200-2011 dataset (2011)

    Google ScholarĀ 

  28. Woo, S., Park, J., Lee, J.-Y., Kweon, I.S.: CBAM: convolutional block attention module. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 3ā€“19 (2018)

    Google ScholarĀ 

  29. Xie, J., Kai, H., Zhu, M., Jinghu, Yu., Zhu, Q.: Investigation of different CNN-based models for improved bird sound classification. IEEE Access 7, 175353ā€“175361 (2019)

    ArticleĀ  Google ScholarĀ 

  30. Yoshihashi, R., Kawakami, R., Iida, M., Naemura, T.: Bird detection and species classification with time-lapse images around a wind farm: dataset construction and evaluation. Wind Energy 20(12), 1983ā€“1995 (2017)

    ArticleĀ  Google ScholarĀ 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohit Kumar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

Ā© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kumar, M., Yadav, A.K., Kumar, M., Yadav, D. (2023). Bird Species Classification fromĀ Images Using Deep Learning. In: Gupta, D., Bhurchandi, K., Murala, S., Raman, B., Kumar, S. (eds) Computer Vision and Image Processing. CVIP 2022. Communications in Computer and Information Science, vol 1777. Springer, Cham. https://doi.org/10.1007/978-3-031-31417-9_30

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-31417-9_30

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-31416-2

  • Online ISBN: 978-3-031-31417-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics