Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Order Conditions for Languages

  • Conference paper
  • First Online:
Combinatorics on Words (WORDS 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13899))

Included in the following conference series:

Abstract

We define a condition on the resolution of bispecials in a language. A language satisfies this order condition if and only if it is the natural coding of a generalized interval exchange transformation, while the order condition plus some additional ones characterize the codings of various more classical interval exchange transformations. Also, a finite word clusters for the Burrows-Wheeler transform if and only if the language generated by its powers satisfies an order condition.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 64.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 84.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Arnoux, P.: Un invariant pour les échanges d’intervalles et les flots sur les surfaces, (in French) Thèse de 3e cycle: Reims (1981)

    Google Scholar 

  2. Arnoux, P., Rauzy, G.: Représentation géométrique de suites de complexité \(2n+1\), (in French) Bull. Soc. Math. France 119, 199–215 (1991)

    Article  MATH  Google Scholar 

  3. Berstel, J.: Sturmian and Episturmian words. In: Bozapalidis, S., Rahonis, G. (eds.) CAI 2007. LNCS, vol. 4728, pp. 23–47. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-75414-5_2

    Chapter  Google Scholar 

  4. Berthé, V., et al.: Acyclic, connected and tree sets, Monatsh. Math. 176(4), 521–550 (2015)

    Google Scholar 

  5. Boshernitzan, M., Kornfeld, I.: Interval translation mappings. Ergodic Theor. Dynam. Syst. 15, 821–832 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bressaud, X., Hubert, P., Maass, A.: Persistence of wandering intervals in self-similar affine interval exchange transformations. Ergod. Theory Dyn. Syst. 30, 665–686 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  7. Burrows, M., Wheeler, D.J.: A block-sorting lossless data compression algorithm, Technical Report 124 (1994) Digital Equipment Corporation

    Google Scholar 

  8. Camelier, R., Guttierez, C.: Affine interval exchange transformations with wandering intervals. Ergod. Theory. Dyn. Syst. 17, 1315–1338 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  9. Cassaigne, J.: Complexité et facteurs spéciaux, (in French) Journées Montoises (Mons,: Bull. Belg. Math. Soc. Simon Stevin 4(1997), 67–88 (1994)

    Google Scholar 

  10. Cassaigne, J., Nicolas, F.: Factor complexity, Combinatorics, automata and number theory. Encyclopedia Math. Appl. 135, 163–247 (2010)

    Google Scholar 

  11. De Luca, A., Edson, M., Zamboni, L.Q.: Extremal values of semi-regular continuants and codings of interval exchange transformations, Mathematika. 69, 432–457 (2023)

    Google Scholar 

  12. Ferenczi, S., Hubert, P., Zamboni, L.Q.: Languages of general interval exchange transformations, arXiv: 2212.01024

  13. Ferenczi, S.: A generalization of the self-dual induction to every interval exchange transformation. Ann. Inst. Fourier (Grenoble) 64, 1947–2002 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  14. Ferenczi, S., Zamboni, L.Q.: Structure of K-interval exchange transformations: induction, trajectories, and distance theorems. J. Anal. Math. 112, 289–328 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  15. Ferenczi, S., Zamboni, L.Q.: Languages of k-interval exchange transformations. Bull. Lond. Math. Soc. 40, 705–714 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  16. Ferenczi, S., Zamboni, L.Q.: Clustering words and interval exchanges. J. Integer Seq. 16, 9 pp. (2013). Article 13.2.1

    Google Scholar 

  17. Ferenczi, S., Zamboni, L.Q.: Clustering of Arnoux-Rauzy words. In: Preparation

    Google Scholar 

  18. Gaboriau, D., Levitt, G., Paulin, F.: Pseudogroups of isometries of R and Rips’ theorem on free actions on R-trees, Israe̋l. J. Math. 87, 403–428 (1994)

    MathSciNet  MATH  Google Scholar 

  19. Ghazouani, S., Ulcigrai, C.: A priori bounds for GIETS, affine shadows and rigidity of foliations in genus two, arXiv:2106.03529

  20. Herman, M.-R.: Sur la conjugaison différentiable des difféomorphsimes du cercle à des rotations, (French). Inst. Hautes Études Sci. Publ. Math. 49, 5–233 (1979)

    Article  MATH  Google Scholar 

  21. Kanel-Belov, A.Y., Chernyat’ev, A.L.: Describing the set of words generated by interval exchange transformations, Comm. Algebra 38, 2588–2605 (2010)

    Google Scholar 

  22. Keane, M.S.: Interval exchange transformations. Math. Zeitsch. 141, 25–31 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  23. Kerckhoff, S.: Simplicial systems for interval exchange maps and measured foliations. Ergod. Theory. Dyn. Syst. 5, 257–271 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  24. Mantaci, S., Restivo, A., Sciortino, M.: Burrows-Wheeler transform and Sturmian words. Inform. Process. Lett. 86, 241–246 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  25. Marmi, S., Moussa, P., Yoccoz, J.-C.: Affine interval exchange maps with a wandering interval. Proc. Lond. Math. Soc. 3, 639–669 100 (2010)

    Google Scholar 

  26. Marmi, S., Moussa, P., Yoccoz, J.-C.: Linearization of generalized interval exchange maps. Ann. of Math. 176(2), 1583–1646 (2012)

    Google Scholar 

  27. Morse, M., Hedlund, G.A.: Symbolic dynamics II. Sturmian trajectories, Amer. J. Math. 62, 1–42 (1940)

    Google Scholar 

  28. Nogueira, A.: Nonorientable recurrence of flows and interval exchange transformations. J. Diff. Eqn. 70, 153–166 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  29. Oseledec, V.I.: The spectrum of ergodic automorphisms, (in Russian) Dokl. Akad. Nauk. SSSR 168, 1009–1011 (1966)

    MathSciNet  Google Scholar 

  30. Simpson, J., Puglisi, S.J.: Words with simple Burrows-Wheeler transforms. Electron. J. Combinatorics 15, Research Paper 83, 17 pp. (2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sébastien Ferenczi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ferenczi, S., Hubert, P., Zamboni, L.Q. (2023). Order Conditions for Languages. In: Frid, A., Mercaş, R. (eds) Combinatorics on Words. WORDS 2023. Lecture Notes in Computer Science, vol 13899. Springer, Cham. https://doi.org/10.1007/978-3-031-33180-0_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-33180-0_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-33179-4

  • Online ISBN: 978-3-031-33180-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics