Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Automaticity and Parikh-Collinear Morphisms

  • Conference paper
  • First Online:
Combinatorics on Words (WORDS 2023)

Abstract

Parikh-collinear morphisms have recently received a lot of attention. They are defined by the property that the Parikh vectors of the images of letters are collinear. We first show that any fixed point of such a morphism is automatic. Consequently, we get under some mild technical assumption that the abelian complexity of a binary fixed point of a Parikh-collinear morphism is also automatic, and we discuss a generalization to arbitrary alphabets. Then, we consider the abelian complexity function of the fixed point of the Parikh-collinear morphism \(0\mapsto 010011\), \(1\mapsto 1001\). This 5-automatic sequence is shown to be aperiodic, answering a question of Salo and Sportiello.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 64.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 84.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    A long version is available at https://doi.org/10.48550/arXiv.2201.04603.

References

  1. Allouche, J.P., Dekking, M., Queffélec, M.: Hidden automatic sequences. Comb. Theory 1(#20) (2021). https://doi.org/10.5070/C61055386

  2. Allouche, J.P., Shallit, J.: Automatic Sequences: Theory, Applications, Generalizations. Cambridge University Press, Cambridge (2003). https://doi.org/10.1017/CBO9780511546563

  3. Allouche, J.-P., Shallit, J.: Automatic sequences are also non-uniformly morphic. In: Raigorodskii, A.M., Rassias, M.T. (eds.) Discrete Mathematics and Applications. SOIA, vol. 165, pp. 1–6. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-55857-4_1

    Chapter  Google Scholar 

  4. Bruyère, V., Hansel, G., Michaux, C., Villemaire, R.: Logic and \(p\)-recognizable sets of integers. Bull. Belg. Math. Soc. Simon Stevin 1(2), 191–238 (1994). http://projecteuclid.org/euclid.bbms/1103408547, journées Montoises (Mons, 1992)

  5. Büchi, J.R.: Weak second-order arithmetic and finite automata. Z. Math. Logik Grundlagen Math. 6, 66–92 (1960). https://doi.org/10.1002/malq.19600060105

    Article  MathSciNet  MATH  Google Scholar 

  6. Béal, M.P., Perrin, D., Restivo, A.: Recognizability of morphisms. Ergodic Theory Dyn. Syst. 1–25 (2023). https://doi.org/10.1017/etds.2022.109

  7. Cassaigne, J., Nicolas, F.: Quelques propriétés des mots substitutifs. Bull. Belg. Math. Soc. Simon Stevin 10(suppl.), 661–676 (2003). http://projecteuclid.org/euclid.bbms/1074791324

  8. Cassaigne, J., Richomme, G., Saari, K., Zamboni, L.Q.: Avoiding abelian powers in binary words with bounded abelian complexity. Int. J. Found. Comput. S. 22(4), 905–920 (2011). https://doi.org/10.1142/S0129054111008489

    Article  MathSciNet  MATH  Google Scholar 

  9. Charlier, É., Leroy, J., Rigo, M.: Asymptotic properties of free monoid morphisms. Linear Algebra Appl. 500, 119–148 (2016). https://doi.org/10.1016/j.laa.2016.02.030

    Article  MathSciNet  MATH  Google Scholar 

  10. Charlier, É., Rampersad, N., Shallit, J.: Enumeration and decidable properties of automatic sequences. Internat. J. Found. Comput. Sci. 23(5), 1035–1066 (2012). https://doi.org/10.1142/S0129054112400448

    Article  MathSciNet  MATH  Google Scholar 

  11. Cobham, A.: Uniform tag sequences. Math. Syst. Theory 6, 164–192 (1972). https://doi.org/10.1007/BF01706087

    Article  MathSciNet  MATH  Google Scholar 

  12. Dekking, F.M.: The spectrum of dynamical systems arising from substitutions of constant length. Zeitschrift für Wahrscheinlichkeitstheorie und Verwandte Gebiete 41(3), 221–239 (1978). https://doi.org/10.1007/BF00534241

    Article  MathSciNet  MATH  Google Scholar 

  13. Durand, F., Leroy, J.: The constant of recognizability is computable for primitive morphisms. Journal of Integer Sequences 20(#17.4.5) (2017). https://cs.uwaterloo.ca/journals/JIS/VOL20/Leroy/leroy4.html

  14. Erdős, P.: Some unsolved problems. Michigan Math. J. 4, 291–300 (1958). https://doi.org/10.1307/mmj/1028997963

    Article  MathSciNet  MATH  Google Scholar 

  15. Fici, G., Puzynina, S.: Abelian combinatorics on words: a survey. Comput. Sci. Rev. 47, 100532 (2023). https://doi.org/10.1016/j.cosrev.2022.100532

  16. Goč, D., Rampersad, N., Rigo, M., Salimov, P.: On the number of abelian bordered words (with an example of automatic theorem-proving). Internat. J. Found. Comput. Sci. 25(8), 1097–1110 (2014). https://doi.org/10.1142/S0129054114400267

    Article  MathSciNet  MATH  Google Scholar 

  17. Guo, Y.J., Lü, X.T., Wen, Z.X.: On the boundary sequence of an automatic sequence. Discrete Math. 345(1) (2022). https://doi.org/10.1016/j.disc.2021.112632

  18. Krawczyk, E., Müllner, C.: Automaticity of uniformly recurrent substitutive sequences (2023). https://doi.org/10.48550/arXiv.2111.13134

  19. Mossé, B.: Reconnaissabilité des substitutions et complexité des suites automatiques. Bulletin de la Société Mathématique de France 124(2), 329–346 (1996). https://doi.org/10.24033/bsmf.2283

  20. Mossé, B.: Puissance de mots et reconnaissabilité des points fixes d’une substitution. Theor. Comput. Sci. 99(2), 327–334 (1992). https://doi.org/10.1016/0304-3975(92)90357-L

    Article  MathSciNet  MATH  Google Scholar 

  21. Mousavi, H.: Automatic theorem proving in Walnut (2016). https://doi.org/10.48550/ARXIV.1603.06017

  22. Parreau, A., Rigo, M., Rowland, E., Vandomme, É.: A new approach to the 2-regularity of the \(\ell \)-abelian complexity of 2-automatic sequences. Electron. J. Comb. 22(#P1.27) (2022). https://doi.org/10.37236/4478

  23. Puzynina, S., Whiteland, M.A.: Abelian closures of infinite binary words. J. Comb. Theory Ser. A 185, 105524 (2022). https://doi.org/10.1016/j.jcta.2021.105524

    Article  MathSciNet  MATH  Google Scholar 

  24. Rigo, M.: Formal languages, automata and numeration systems. Vol. 1. ISTE, London; John Wiley & Sons Inc, Hoboken, NJ (2014), introduction to combinatorics on words, With a foreword by Valérie Bethé. https://doi.org/10.1002/9781119008200

  25. Rigo, M.: Formal languages, automata and numeration systems. Vol. 2. Networks and Telecommunications Series, ISTE, London; John Wiley & Sons Inc, Hoboken, NJ (2014), applications to recognizability and decidability, With a foreword by Valérie Berthé. https://doi.org/10.1002/9781119042853

  26. Rigo, M., Salimov, P.: Another generalization of abelian equivalence: binomial complexity of infinite words. Theor. Comput. Sci. 601, 47–57 (2015). https://doi.org/10.1016/j.tcs.2015.07.025

    Article  MathSciNet  MATH  Google Scholar 

  27. Rigo, M., Stipulanti, M., Whiteland, M.A.: Binomial complexities and Parikh-collinear morphisms. In: Diekert, V., Volkov, M.V. (eds.) Developments in Language Theory - 26th International Conference, DLT 2022, Tampa, FL, USA, May 9–13, 2022, Proceedings. Lecture Notes in Computer Science, vol. 13257, pp. 251–262. Springer (2022). https://doi.org/10.1007/978-3-031-05578-2_20

  28. Schaeffer, L.: Deciding Properties of Automatic Sequences. Master’s thesis, Univ. of Waterloo (2013). https://uwspace.uwaterloo.ca/handle/10012/7899

  29. Shallit, J.: Abelian complexity and synchronization. INTEGERS: Electron. J. Comb. Number Theory (#A.36) (2021). http://math.colgate.edu/integers/v36/v36.pdf

  30. Shallit, J.: The Logical Approach to Automatic Sequences: Exploring Combinatorics on Words with Walnut. London Mathematical Society Lecture Note Series, Cambridge University Press (2022). https://doi.org/10.1017/9781108775267

Download references

Acknowledgments

M. Stipulanti and M. Whiteland are supported by the FNRS Research grants 1.B.397.20F and 1.B.466.21F, respectively. We thank Julien Leroy for fruitful discussions on morphic words and pointing out useful references. We thank A. Sportiello and V. Salo for asking the question leading to this paper. We also thank the reviewers for their suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Markus A. Whiteland .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Rigo, M., Stipulanti, M., Whiteland, M.A. (2023). Automaticity and Parikh-Collinear Morphisms. In: Frid, A., Mercaş, R. (eds) Combinatorics on Words. WORDS 2023. Lecture Notes in Computer Science, vol 13899. Springer, Cham. https://doi.org/10.1007/978-3-031-33180-0_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-33180-0_19

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-33179-4

  • Online ISBN: 978-3-031-33180-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics