Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Set Augmented Finite Automata overĀ Infinite Alphabets

  • Conference paper
  • First Online:
Developments in Language Theory (DLT 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13911))

Included in the following conference series:

  • 414 Accesses

Abstract

A data language is set of finite words defined on an infinite alphabet. Data languages are used to express properties associated with data values (domain defined over a countably infinite set). In this paper, we introduce set augmented finite automata (SAFA), a new class of automata for expressing data languages. SAFA is able to recognize data languages while storing a few data values in most cases. We investigate nonemptiness, membership, closure properties, and expressiveness of SAFA.

This work has been partially supported by the DST-SERB project SRG/2021/000466 Zero-sum and Nonzero-sum Games for Controller Synthesis of Reactive Systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    The language \(L'=L_\mathsf{fd(a_1)}\cap \dots L_\mathsf{fd(a_{k+1})}\) could have also been considered but the proof is relatively simpler if we instead consider L.

References

  1. Autebert, J.M., Beauquier, J., Boasson, L.: Langages sur des alphabets infinis. Discret. Appl. Math. 2(1), 1ā€“20 (1980)

    ArticleĀ  MathSciNetĀ  MATHĀ  Google ScholarĀ 

  2. Bjƶrklund, H., Schwentick, T.: On notions of regularity for data languages. Theoret. Comput. Sci. 411(4ā€“5), 702ā€“715 (2010)

    ArticleĀ  MathSciNetĀ  MATHĀ  Google ScholarĀ 

  3. Bojańczyk, M., Muscholl, A., Schwentick, T., Segoufin, L.: Two-variable logic on data trees and xml reasoning. J. ACM 56(3) (2009). https://doi.org/10.1145/1516512.1516515

  4. Bojanczyk, M., Muscholl, A., Schwentick, T., Segoufin, L., David, C.: Two-variable logic on words with data. In: 21st Annual IEEE Symposium on Logic in Computer Science (LICS 2006), pp. 7ā€“16. IEEE (2006)

    Google ScholarĀ 

  5. Bollig, B.: An automaton over data words that captures EMSO logic. In: Katoen, J.-P., Kƶnig, B. (eds.) CONCUR 2011. LNCS, vol. 6901, pp. 171ā€“186. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-23217-6_12

    ChapterĀ  Google ScholarĀ 

  6. Cheng, E.Y., Kaminski, M.: Context-free languages over infinite alphabets. Acta Informatica 35(3), 245ā€“267 (1998)

    ArticleĀ  MathSciNetĀ  MATHĀ  Google ScholarĀ 

  7. Choffrut, C.: On relations of finite words over infinite alphabets. In: Dƶmƶsi, P., IvĆ”n, S. (eds.) Proceedings of 13th International Conference on Automata and Formal Languages, AFL 2011, Debrecen, Hungary, 17ā€“22 August 2011, pp. 25ā€“27 (2011)

    Google ScholarĀ 

  8. Czerwiński, W., Lasota, S., Lazić, R., Leroux, J., Mazowiecki, F.: The reachability problem for petri nets is not elementary. In: Proceedings of the 51st Annual ACM SIGACT Symposium on Theory of Computing, STOC 2019, pp. 24ā€“33. Association for Computing Machinery, New York (2019). https://doi.org/10.1145/3313276.3316369

  9. Dassow, J., Vaszil, G.: P finite automata and regular languages over countably infinite alphabets. In: Hoogeboom, H.J., Păun, G., Rozenberg, G., Salomaa, A. (eds.) WMC 2006. LNCS, vol. 4361, pp. 367ā€“381. Springer, Heidelberg (2006). https://doi.org/10.1007/11963516_23

    ChapterĀ  Google ScholarĀ 

  10. Demri, S., Lazić, R.: LTL with the freeze quantifier and register automata. ACM Trans. Comput. Logic (TOCL) 10(3), 1ā€“30 (2009)

    ArticleĀ  MathSciNetĀ  MATHĀ  Google ScholarĀ 

  11. Figueira, D.: Alternating register automata on finite words and trees. Logical Methods Comput. Sci. 8 (2012)

    Google ScholarĀ 

  12. Grumberg, O., Kupferman, O., Sheinvald, S.: Variable automata over infinite alphabets. In: Dediu, A.-H., Fernau, H., MartĆ­n-Vide, C. (eds.) LATA 2010. LNCS, vol. 6031, pp. 561ā€“572. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13089-2_47

    ChapterĀ  MATHĀ  Google ScholarĀ 

  13. Iosif, R., Xu, X.: Abstraction refinement for emptiness checking of alternating data automata. In: Beyer, D., Huisman, M. (eds.) TACAS 2018. LNCS, vol. 10806, pp. 93ā€“111. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-89963-3_6

    ChapterĀ  Google ScholarĀ 

  14. Jones, N.D.: Space-bounded reducibility among combinatorial problems. J. Comput. Syst. Sci. 11(1), 68ā€“85 (1975)

    ArticleĀ  MathSciNetĀ  MATHĀ  Google ScholarĀ 

  15. Kaminski, M., Francez, N.: Finite-memory automata. Theoret. Comput. Sci. 134(2), 329ā€“363 (1994)

    ArticleĀ  MathSciNetĀ  MATHĀ  Google ScholarĀ 

  16. Kaminski, M., Tan, T.: Regular expressions for languages over infinite alphabets. Fund. Inform. 69(3), 301ā€“318 (2006)

    MathSciNetĀ  MATHĀ  Google ScholarĀ 

  17. Manuel, A., Ramanujam, R.: Class counting automata on datawords. Int. J. Found. Comput. Sci. 22(04), 863ā€“882 (2011)

    ArticleĀ  MathSciNetĀ  MATHĀ  Google ScholarĀ 

  18. Manuel, A., Ramanujam, R.: Automata over infinite alphabets. In: Modern Applications of Automata Theory, pp. 529ā€“553. World Scientific (2012)

    Google ScholarĀ 

  19. Neven, F.: Automata, logic, and XML. In: Bradfield, J. (ed.) CSL 2002. LNCS, vol. 2471, pp. 2ā€“26. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45793-3_2

    ChapterĀ  MATHĀ  Google ScholarĀ 

  20. Neven, F., Schwentick, T., Vianu, V.: Finite state machines for strings over infinite alphabets. ACM Trans. Comput. Logic (TOCL) 5(3), 403ā€“435 (2004)

    ArticleĀ  MathSciNetĀ  MATHĀ  Google ScholarĀ 

  21. Sakamoto, H., Ikeda, D.: Intractability of decision problems for finite-memory automata. Theoret. Comput. Sci. 231(2), 297ā€“308 (2000)

    ArticleĀ  MathSciNetĀ  MATHĀ  Google ScholarĀ 

  22. Tan, T.: On pebble automata for data languages with decidable emptiness problem. J. Comput. Syst. Sci. 76(8), 778ā€“791 (2010)

    ArticleĀ  MathSciNetĀ  MATHĀ  Google ScholarĀ 

Download references

Acknowledgements

We thank Amaldev Manuel for providing useful comments on a preliminary version of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shibashis Guha .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

Ā© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Banerjee, A., Chatterjee, K., Guha, S. (2023). Set Augmented Finite Automata overĀ Infinite Alphabets. In: Drewes, F., Volkov, M. (eds) Developments in Language Theory. DLT 2023. Lecture Notes in Computer Science, vol 13911. Springer, Cham. https://doi.org/10.1007/978-3-031-33264-7_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-33264-7_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-33263-0

  • Online ISBN: 978-3-031-33264-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics