Abstract
A data language is set of finite words defined on an infinite alphabet. Data languages are used to express properties associated with data values (domain defined over a countably infinite set). In this paper, we introduce set augmented finite automata (SAFA), a new class of automata for expressing data languages. SAFA is able to recognize data languages while storing a few data values in most cases. We investigate nonemptiness, membership, closure properties, and expressiveness of SAFA.
This work has been partially supported by the DST-SERB project SRG/2021/000466 Zero-sum and Nonzero-sum Games for Controller Synthesis of Reactive Systems.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
The language \(L'=L_\mathsf{fd(a_1)}\cap \dots L_\mathsf{fd(a_{k+1})}\) could have also been considered but the proof is relatively simpler if we instead consider L.
References
Autebert, J.M., Beauquier, J., Boasson, L.: Langages sur des alphabets infinis. Discret. Appl. Math. 2(1), 1ā20 (1980)
Bjƶrklund, H., Schwentick, T.: On notions of regularity for data languages. Theoret. Comput. Sci. 411(4ā5), 702ā715 (2010)
BojaÅczyk, M., Muscholl, A., Schwentick, T., Segoufin, L.: Two-variable logic on data trees and xml reasoning. J. ACM 56(3) (2009). https://doi.org/10.1145/1516512.1516515
Bojanczyk, M., Muscholl, A., Schwentick, T., Segoufin, L., David, C.: Two-variable logic on words with data. In: 21st Annual IEEE Symposium on Logic in Computer Science (LICS 2006), pp. 7ā16. IEEE (2006)
Bollig, B.: An automaton over data words that captures EMSO logic. In: Katoen, J.-P., Kƶnig, B. (eds.) CONCUR 2011. LNCS, vol. 6901, pp. 171ā186. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-23217-6_12
Cheng, E.Y., Kaminski, M.: Context-free languages over infinite alphabets. Acta Informatica 35(3), 245ā267 (1998)
Choffrut, C.: On relations of finite words over infinite alphabets. In: Dƶmƶsi, P., IvĆ”n, S. (eds.) Proceedings of 13th International Conference on Automata and Formal Languages, AFL 2011, Debrecen, Hungary, 17ā22 August 2011, pp. 25ā27 (2011)
CzerwiÅski, W., Lasota, S., LaziÄ, R., Leroux, J., Mazowiecki, F.: The reachability problem for petri nets is not elementary. In: Proceedings of the 51st Annual ACM SIGACT Symposium on Theory of Computing, STOC 2019, pp. 24ā33. Association for Computing Machinery, New York (2019). https://doi.org/10.1145/3313276.3316369
Dassow, J., Vaszil, G.: P finite automata and regular languages over countably infinite alphabets. In: Hoogeboom, H.J., PÄun, G., Rozenberg, G., Salomaa, A. (eds.) WMC 2006. LNCS, vol. 4361, pp. 367ā381. Springer, Heidelberg (2006). https://doi.org/10.1007/11963516_23
Demri, S., LaziÄ, R.: LTL with the freeze quantifier and register automata. ACM Trans. Comput. Logic (TOCL) 10(3), 1ā30 (2009)
Figueira, D.: Alternating register automata on finite words and trees. Logical Methods Comput. Sci. 8 (2012)
Grumberg, O., Kupferman, O., Sheinvald, S.: Variable automata over infinite alphabets. In: Dediu, A.-H., Fernau, H., MartĆn-Vide, C. (eds.) LATA 2010. LNCS, vol. 6031, pp. 561ā572. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13089-2_47
Iosif, R., Xu, X.: Abstraction refinement for emptiness checking of alternating data automata. In: Beyer, D., Huisman, M. (eds.) TACAS 2018. LNCS, vol. 10806, pp. 93ā111. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-89963-3_6
Jones, N.D.: Space-bounded reducibility among combinatorial problems. J. Comput. Syst. Sci. 11(1), 68ā85 (1975)
Kaminski, M., Francez, N.: Finite-memory automata. Theoret. Comput. Sci. 134(2), 329ā363 (1994)
Kaminski, M., Tan, T.: Regular expressions for languages over infinite alphabets. Fund. Inform. 69(3), 301ā318 (2006)
Manuel, A., Ramanujam, R.: Class counting automata on datawords. Int. J. Found. Comput. Sci. 22(04), 863ā882 (2011)
Manuel, A., Ramanujam, R.: Automata over infinite alphabets. In: Modern Applications of Automata Theory, pp. 529ā553. World Scientific (2012)
Neven, F.: Automata, logic, and XML. In: Bradfield, J. (ed.) CSL 2002. LNCS, vol. 2471, pp. 2ā26. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45793-3_2
Neven, F., Schwentick, T., Vianu, V.: Finite state machines for strings over infinite alphabets. ACM Trans. Comput. Logic (TOCL) 5(3), 403ā435 (2004)
Sakamoto, H., Ikeda, D.: Intractability of decision problems for finite-memory automata. Theoret. Comput. Sci. 231(2), 297ā308 (2000)
Tan, T.: On pebble automata for data languages with decidable emptiness problem. J. Comput. Syst. Sci. 76(8), 778ā791 (2010)
Acknowledgements
We thank Amaldev Manuel for providing useful comments on a preliminary version of this paper.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
Ā© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Banerjee, A., Chatterjee, K., Guha, S. (2023). Set Augmented Finite Automata overĀ Infinite Alphabets. In: Drewes, F., Volkov, M. (eds) Developments in Language Theory. DLT 2023. Lecture Notes in Computer Science, vol 13911. Springer, Cham. https://doi.org/10.1007/978-3-031-33264-7_4
Download citation
DOI: https://doi.org/10.1007/978-3-031-33264-7_4
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-33263-0
Online ISBN: 978-3-031-33264-7
eBook Packages: Computer ScienceComputer Science (R0)