Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Disentangled Representation with Causal Constraints for Counterfactual Fairness

  • Conference paper
  • First Online:
Advances in Knowledge Discovery and Data Mining (PAKDD 2023)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 13935))

Included in the following conference series:

Abstract

Much research has been devoted to the problem of learning fair representations; however, they do not explicitly state the relationship between latent representations. In many real-world applications, there may be causal relationships between latent representations. Furthermore, most fair representation learning methods focus on group-level fairness and are based on correlation, ignoring the causal relationships underlying the data. In this work, we theoretically demonstrate that using the structured representations enables downstream predictive models to achieve counterfactual fairness, and then we propose the Counterfactual Fairness Variational AutoEncoder (CF-VAE) to obtain structured representations with respect to domain knowledge. The experimental results show that the proposed method achieves better fairness and accuracy performance than the benchmark fairness methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Brennan, T., Dieterich, W., Ehret, B.: Evaluating the predictive validity of the compass risk and needs assessment system. Crim. Just. Behav. 36(1), 21–40 (2009)

    Article  Google Scholar 

  2. Calmon, F.P., Wei, D., Vinzamuri, B., Ramamurthy, K.N., Varshney, K.R.: Optimized pre-processing for discrimination prevention. In: NeurIPS, pp. 3992–4001 (2017)

    Google Scholar 

  3. Cheng, D., Li, J., Liu, L., Yu, K., Le, T.D., Liu, J.: Toward unique and unbiased causal effect estimation from data with hidden variables. IEEE Trans. Neural Netw. Learn. Syst., 1–13 (2022)

    Google Scholar 

  4. Chiappa, S.: Path-specific counterfactual fairness. In: AAAI, pp. 7801–7808 (2019)

    Google Scholar 

  5. Coşer, A., Maer-matei, M.M., Albu, C.: Predictive models for loan default risk assessment. Econ. Comput. Econ. Cybern. Stud. Res. 53(2), 149–165 (2019)

    Google Scholar 

  6. Creager, E., et al.: Flexibly fair representation learning by disentanglement. In: ICML, pp. 1436–1445 (2019)

    Google Scholar 

  7. Dua, D., Graff, C.: UCI machine learning repository (2017)

    Google Scholar 

  8. Dwork, C., Hardt, M., Pitassi, T., Reingold, O., Zemel, R.S.: Fairness through awareness. In: ITCS, pp. 214–226 (2012)

    Google Scholar 

  9. Feldman, M., Friedler, S.A., Moeller, J., Scheidegger, C., Venkatasubramanian, S.: Certifying and removing disparate impact. In: SIGKDD, pp. 259–268 (2015)

    Google Scholar 

  10. Gitiaux, X., Rangwala, H.: Learning smooth and fair representations. In: AISTATS, pp. 253–261 (2021)

    Google Scholar 

  11. Hardt, M., Price, E., Srebro, N.: Equality of opportunity in supervised learning. In: NeurIPS, pp. 3315–3323 (2016)

    Google Scholar 

  12. Higgins, I., et al.: beta-vae: learning basic visual concepts with a constrained variational framework. In: ICLR, pp. 1–22 (2017)

    Google Scholar 

  13. Kamiran, F., Calders, T.: Data preprocessing techniques for classification without discrimination. Knowl. Inf. Syst. 33(1), 1–33 (2012)

    Article  Google Scholar 

  14. Kim, S., Joshi, P., Kalsi, P.S., Taheri, P.: Crime analysis through machine learning. In: IEMCON, pp. 415–420 (2018)

    Google Scholar 

  15. Kingma, D.P., Welling, M.: Auto-encoding variational bayes. In: ICLR, pp. 1–14 (2014)

    Google Scholar 

  16. Kruppa, J., Schwarz, A., Arminger, G., Ziegler, A.: Consumer credit risk: individual probability estimates using machine learning. Expert Syst. Appl. 40(13), 5125–5131 (2013)

    Article  Google Scholar 

  17. Kusner, M.J., Loftus, J.R., Russell, C., Silva, R.: Counterfactual fairness. In: NeurIPS, pp. 4066–4076 (2017)

    Google Scholar 

  18. Lewis, D.: Counterfactuals. John Wiley & Sons, Hoboken (2013)

    Google Scholar 

  19. Li, J., Liu, J., Liu, L., Le, T.D., Ma, S., Han, Y.: Discrimination detection by causal effect estimation. In: IEEE BigData, pp. 1087–1094 (2017)

    Google Scholar 

  20. Louizos, C., Swersky, K., Li, Y., Welling, M., Zemel, R.S.: The variational fair autoencoder. In: ICLR, pp. 1–11 (2016)

    Google Scholar 

  21. Mac, R.: Facebook apologizes after ai puts ‘primates’ label on video of black men (2021). https://www.nytimes.com/2021/09/03/technology/facebook-ai-race-primates.html

  22. Madras, D., Creager, E., Pitassi, T., Zemel, R.S.: Fairness through causal awareness: learning causal latent-variable models for biased data. In: FAT*, pp. 349–358 (2019)

    Google Scholar 

  23. Mehrabi, N., Morstatter, F., Saxena, N., Lerman, K., Galstyan, A.: A survey on bias and fairness in machine learning. ACM Comput. Surv. 54(6), 115:1–115:35 (2021)

    Google Scholar 

  24. Nabi, R., Shpitser, I.: Fair inference on outcomes. In: AAAI, pp. 1931–1940 (2018)

    Google Scholar 

  25. Park, S., Hwang, S., Kim, D., Byun, H.: Learning disentangled representation for fair facial attribute classification via fairness-aware information alignment. In: AAAI, pp. 2403–2411 (2021)

    Google Scholar 

  26. Pearl, J.: Causality. Cambridge University Press, Cambridge (2009)

    Google Scholar 

  27. Spirtes, P., Glymour, C.N., Scheines, R., Heckerman, D.: Causation, Prediction, and Search. MIT press, Cambridge (2000)

    Google Scholar 

  28. Wightman, L.F.: Lsac national longitudinal bar passage study. lsac research report series (1998)

    Google Scholar 

  29. Xie, P., Wu, W., Zhu, Y., Xing, E.P.: Orthogonality-promoting distance metric learning: convex relaxation and theoretical analysis. In: ICML, pp. 5399–5408 (2018)

    Google Scholar 

  30. Zafar, M.B., Valera, I., Gomez-Rodriguez, M., Gummadi, K.P.: Fairness beyond disparate treatment & disparate impact: Learning classification without disparate mistreatment. In: WWW, pp. 1171–1180 (2017)

    Google Scholar 

  31. Zemel, R.S., Wu, Y., Swersky, K., Pitassi, T., Dwork, C.: Learning fair representations. In: ICML, pp. 325–333 (2013)

    Google Scholar 

  32. Zhang, L., Wu, X.: Anti-discrimination learning: a causal modeling-based framework. Int. J. Data Sci. Anal. 4(1), 1–16 (2017)

    Article  MathSciNet  Google Scholar 

  33. Zhang, L., Wu, Y., Wu, X.: A causal framework for discovering and removing direct and indirect discrimination. In: IJCAI, pp. 3929–3935 (2017)

    Google Scholar 

Download references

Acknowledgements

This work has received partial support from the Australian Research Council Discovery Project (DP200101210) to J. Li, J. Liu and K. Wang, the discovery grant from the Natural Sciences and Engineering Research Council of Canada to K. Wang, and the University Presidents Scholarship (UPS) of the University of South Australia to Z. Xu.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ziqi Xu or Jiuyong Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Xu, Z., Liu, J., Cheng, D., Li, J., Liu, L., Wang, K. (2023). Disentangled Representation with Causal Constraints for Counterfactual Fairness. In: Kashima, H., Ide, T., Peng, WC. (eds) Advances in Knowledge Discovery and Data Mining. PAKDD 2023. Lecture Notes in Computer Science(), vol 13935. Springer, Cham. https://doi.org/10.1007/978-3-031-33374-3_37

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-33374-3_37

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-33373-6

  • Online ISBN: 978-3-031-33374-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics