Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

An Effective WGAN-Based Anomaly Detection Model for IoT Multivariate Time Series

  • Conference paper
  • First Online:
Advances in Knowledge Discovery and Data Mining (PAKDD 2023)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 13935))

Included in the following conference series:

  • 1361 Accesses

Abstract

This paper studies an effective unsupervised deep learning model for multivariate time series anomaly detection. Since multivariate time series usually have problems of insufficient labeling and highly-complex temporal correlation, effectively detecting anomalies in multivariate time series data is particularly challenging. To solve this problem, we propose a model named Wasserstein-GAN with gradient Penalty and effective Scoring (WPS). In this model, Wasserstein Distance with Gradient Penalty helps to capture the data regularities between generator output and real data, thus improving the training stability. Meanwhile, an effective scoring function that consists of reconstruction error, discrimination error, and prediction error is designed to evaluate the accuracy of the abnormal prediction and recall. The experimental results show that compared with the suboptimal baseline model, our proposed WPS obtains 17.68% and 10.41% improvement in prediction precision and F1 score, respectively.

This research was supported by the Science and Technology Program of Sichuan Province under Grant No. 2020JDRC0067, No. 2023JDRC0087, and No. 2020YFG0326, and the Talent Program of Xihua University under Grant No. Z202047 and No. Z222001.

S. Qi and J. Chen—Contributed to the work equally and should be regarded as co-first authors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Abdi, H., Williams, L.J.: Principal component analysis. Wiley Interdiscipl. Rev.: Comput. Stat. 2(4), 433–459 (2010)

    Article  Google Scholar 

  2. Angiulli, F., Pizzuti, C.: Fast outlier detection in high dimensional spaces. In: Elomaa, T., Mannila, H., Toivonen, H. (eds.) PKDD 2002. LNCS, vol. 2431, pp. 15–27. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45681-3_2

    Chapter  Google Scholar 

  3. Arjovsky, M., Chintala, S., Bottou, L.: Wasserstein generative adversarial networks. In: International Conference on Machine Learning, pp. 214–223. PMLR (2017)

    Google Scholar 

  4. Audibert, J., Michiardi, P., Guyard, F., Marti, S., Zuluaga, M.A.: USAD: unsupervised anomaly detection on multivariate time series. In: Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 3395–3404 (2020)

    Google Scholar 

  5. Bashar, M.A., Nayak, R.: Tanogan: time series anomaly detection with generative adversarial networks. In: 2020 IEEE Symposium Series on Computational Intelligence (SSCI), pp. 1778–1785. IEEE (2020)

    Google Scholar 

  6. Breunig, M.M., Kriegel, H.P., Ng, R.T., Sander, J.: LOF: identifying density-based local outliers. In: Proceedings of the 2000 ACM SIGMOD International Conference on Management of Data, pp. 93–104 (2000)

    Google Scholar 

  7. Chen, P., et al.: Effectively detecting operational anomalies in large-scale IoT data infrastructures by using a GAN-based predictive model. Comput. J. (2022)

    Google Scholar 

  8. Garg, A., Zhang, W., Samaran, J., Savitha, R., Foo, C.S.: An evaluation of anomaly detection and diagnosis in multivariate time series. IEEE Trans. Neural Networks Learn. Syst. 33(6), 2508–2517 (2021)

    Article  MathSciNet  Google Scholar 

  9. Goodfellow, I., et al.: Generative adversarial networks. Commun. ACM 63(11), 139–144 (2020)

    Article  MathSciNet  Google Scholar 

  10. Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein GANs. In: Advances in Neural Information Processing Systems, vol. 30 (2017)

    Google Scholar 

  11. Hundman, K., Constantinou, V., Laporte, C., Colwell, I., Soderstrom, T.: Detecting spacecraft anomalies using LSTMS and nonparametric dynamic thresholding. In: Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 387–395 (2018)

    Google Scholar 

  12. Jabbar, A., Li, X., Omar, B.: A survey on generative adversarial networks: variants, applications, and training. ACM Comput. Surv. (CSUR) 54(8), 1–49 (2021)

    Article  Google Scholar 

  13. Li, D., Chen, D., Jin, B., Shi, L., Goh, J., Ng, S.-K.: MAD-GAN: multivariate anomaly detection for time series data with generative adversarial networks. In: Tetko, I.V., Kůrková, V., Karpov, P., Theis, F. (eds.) ICANN 2019. LNCS, vol. 11730, pp. 703–716. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-30490-4_56

    Chapter  Google Scholar 

  14. Li, Y., Peng, X., Zhang, J., Li, Z., Wen, M.: DCT-GAN: dilated convolutional transformer-based GAN for time series anomaly detection. IEEE Trans. Knowl. Data Eng. 35, 3632–3644 (2021)

    Article  Google Scholar 

  15. Liu, F.T., Ting, K.M., Zhou, Z.H.: Isolation forest. In: 2008 Eighth IEEE International Conference on Data Mining, pp. 413–422. IEEE (2008)

    Google Scholar 

  16. Malhotra, P., Vig, L., Shroff, G., Agarwal, P., et al.: Long short term memory networks for anomaly detection in time series. In: ESANN, vol. 2015, p. 89 (2015)

    Google Scholar 

  17. Pang, G., Shen, C., Cao, L., Hengel, A.V.D.: Deep learning for anomaly detection: a review. ACM Comput. Surv. (CSUR) 54(2), 1–38 (2021)

    Article  Google Scholar 

  18. Park, D., Hoshi, Y., Kemp, C.C.: A multimodal anomaly detector for robot-assisted feeding using an LSTM-based variational autoencoder. IEEE Robot. Autom. Lett. 3(3), 1544–1551 (2018)

    Article  Google Scholar 

  19. Pena, E.H., de Assis, M.V., Proença, M.L.: Anomaly detection using forecasting methods Arima and HWDS. In: 2013 32nd International Conference of the Chilean Computer Science Society (SCCC), pp. 63–66. IEEE (2013)

    Google Scholar 

  20. Schölkopf, B., Williamson, R.C., Smola, A., Shawe-Taylor, J., Platt, J.: Support vector method for novelty detection. In: Advances in Neural Information Processing Systems, vol. 12 (1999)

    Google Scholar 

  21. Schubert, E., Sander, J., Ester, M., Kriegel, H.P., Xu, X.: DBSCAN revisited, revisited: why and how you should (still) use DBSCAN. ACM Trans. Database Syst. (TODS) 42(3), 1–21 (2017)

    Article  MathSciNet  Google Scholar 

  22. Su, Y., Zhao, Y., Niu, C., Liu, R., Sun, W., Pei, D.: Robust anomaly detection for multivariate time series through stochastic recurrent neural network. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 2828–2837 (2019)

    Google Scholar 

  23. Wen, P., Yang, Z., Wu, L., Qi, S., Chen, J., Chen, P.: A novel convolutional adversarial framework for multivariate time series anomaly detection and explanation in cloud environment. Appl. Sci. 12(20), 10390 (2022)

    Article  Google Scholar 

  24. Xu, H., et al.: Unsupervised anomaly detection via variational auto-encoder for seasonal KPIS in web applications. In: Proceedings of the 2018 World Wide Web Conference, pp. 187–196 (2018)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peng Chen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Qi, S., Chen, J., Chen, P., Wen, P., Shan, W., Xiong, L. (2023). An Effective WGAN-Based Anomaly Detection Model for IoT Multivariate Time Series. In: Kashima, H., Ide, T., Peng, WC. (eds) Advances in Knowledge Discovery and Data Mining. PAKDD 2023. Lecture Notes in Computer Science(), vol 13935. Springer, Cham. https://doi.org/10.1007/978-3-031-33374-3_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-33374-3_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-33373-6

  • Online ISBN: 978-3-031-33374-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics