Abstract
Among the clustering methods, K-Means and its variants are very popular. These methods solve at each iteration the first-order optimality conditions. However, in some cases, the function to be minimized is not convex, as for the Fuzzy C-Means version with Mahalanobis distance (FCM-GK). In this study, we apply the Alternating Directions Method of Multiplier (ADMM) to ensure a good convergence. ADMM is often applied to solve a separable convex minimization problem with linear constraints. ADMM is a decomposition/coordination method with a coordination step provided by Lagrange multipliers. By appropriately introducing auxiliary variables, this method allows the problem to be decomposed into easily solvable convex subproblems while keeping the same iterative structure. Numerical results have demonstrated the significant performance of the proposed method compared to the standard method, especially for high-dimensional data.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Anter, A.M., Hassenian, A.E., Oliva, D.: An improved fast fuzzy c-means using crow search optimization algorithm for crop identification in agricultural. Expert Syst. Appl. 118, 340–354 (2019)
Bezdek, J.C.: Fuzzy mathematics in pattern classification. Cornell University (1973)
Bezdek, J., Dunn, J.: Optimal fuzzy partitions: a heuristic for estimating the parameters in a mixture of normal distributions. IEEE Trans. Comput. 100(8), 835–838 (1975)
Boyd, S., Parikh, N., Chu, E., Peleato, B., Eckstein, J.: Distributed optimization and statistical learning via alternating direction method of multipliers. Found. Trends Mach. Learn. 3, 1–122 (2011)
Cai, W., Zhai, B., Liu, Y., Liu, R., Ning, X.: Quadratic polynomial guided fuzzy c-means and dual attention mechanism for medical image segmentation. Displays 70, 102106 (2021)
Eckstein, J.: Parallel alternating direction multiplier decomposition of convex programs. J. Optim. Theory Appl. 1, 39–62 (1994)
Wang, J., Yu, F., Chen, X., Zhao, L.: ADMM for efficient deep learning with global convergence. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 111–119 (2019)
Fortin, M., Glowinski, R.: Augmented Lagrangian Methods: Applications to the Numerical Solution of Boundary-Value Problems. North-Holland, Amsterdam (1983)
Gabay, D., Mercier, B.: A dual algorithm for the solution of nonlinear variational problems via finite element approximations. Comput. Math. Appl. 2, 17–40 (1976)
Ghosh, S., Dubey, S.K.: Comparative analysis of k-means and fuzzy c-means algorithms. Int. J. Adv. Comput. Sci. Appl. 4(4), 35–39 (2013)
Glowinski, R., Le Tallec, P.: Augmented Lagrangian and Operator-Splitting Methods in Nonlinear Mechanics. SIAM, Philadelphia (1989)
Glowinski, R., Marocco, A.: Sur l’approximation par éléments finis d’ordre un, et la résolution par pénalisation-dualité, d’une classe de problèmes de Dirichlet non linéaires. RAIRO-AN 9(2), 41–76 (1975)
Gustafson, D., Kessel, W.: Fuzzy clustering with a fuzzy covariance matrix. In: 1978 IEEE Conference on Decision and Control Including the 17th Symposium on Adaptive Processes, pp. 761–766. IEEE (1979)
Hubert, L., Arabie, P.: Comparing partitions. J. Classif. 2(1), 193–218 (1985)
Jain, A.K., Dubes, R.C.: Algorithms for Clustering Data. Prentice-Hall Inc., Hoboken (1988)
Koko, J.: Parallel Uzawa method for large-scale minimization of partially separable functions. J. Optim. Theory Appl. 158, 172–187 (2013)
Koko, J., Jehan-Besson, S.: An augmented Lagrangian method for \({TV}_g\)+\({L}^1\)-norm minimization. J. Math. Imaging Vis. 38, 182–196 (2010)
Masson, M.H., Denoeux, T.: ECM: an evidential version of the fuzzy c-means algorithm. Pattern Recogn. 41(4), 1384–1397 (2008)
Pal, N.R., Bezdek, J.C.: On cluster validity for the fuzzy c-means model. IEEE Trans. Fuzzy Syst. 3(3), 370–379 (1995)
Pal, N.R., Pal, K., Keller, J.M., Bezdek, J.C.: A possibilistic fuzzy c-means clustering algorithm. IEEE Trans. Fuzzy Syst. 13(4), 517–530 (2005)
Yin, S., Li, H.: Hot region selection based on selective search and modified fuzzy c-means in remote sensing images. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 13, 5862–5871 (2020)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Albert, B., Antoine, V., Koko, J. (2023). Optimization of Fuzzy C-Means with Alternating Direction Method of Multipliers. In: Dorronsoro, B., Chicano, F., Danoy, G., Talbi, EG. (eds) Optimization and Learning. OLA 2023. Communications in Computer and Information Science, vol 1824. Springer, Cham. https://doi.org/10.1007/978-3-031-34020-8_21
Download citation
DOI: https://doi.org/10.1007/978-3-031-34020-8_21
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-34019-2
Online ISBN: 978-3-031-34020-8
eBook Packages: Computer ScienceComputer Science (R0)