Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Implementing Network Applications for 5G-Enabled Robots Through the 5G-ERA Platform

  • Conference paper
  • First Online:
Artificial Intelligence Applications and Innovations. AIAI 2023 IFIP WG 12.5 International Workshops (AIAI 2023)

Abstract

Novel orchestration architectures for 5G networks have primarily focused on enhancing Quality of Service, yet have neglected to address Quality of Experience concerns. Consequently, these systems struggle with intent recognition and End-to-End interpretability, resulting in the possibility of suboptimal control policies being developed. The 5G-ERA project has proposed and demonstrated an AI-driven intent-based networking solution for autonomous robots to address this issue. Specifically, the proposed solution employs a workflow consisting of four tools - Action Sequence Generation, Network Intent Estimation, Resource Usage Forecasting, and OSM Control Policy Generation - to map an individual vertical action's intent to a global OSM control policy. The paper describes how the 5G-ERA platform enables the onboarding and control of 5G-enabled robots and how we demonstrate the platform’s capabilities through the project’s use cases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Open-source Management and Orchestration (OSM). https://osm.etsi.org/. Accessed 01 May 2020

  2. Cloudify. https://cloudify.co/. Accessed 01 May 2020

  3. Trakadas, P.; Karkazis, P.; Leligou, H.C, et. al.: Comparison of management and orchestration solutions for the 5G Era. J. Sens. Actuator Netw. 4(9), (2020)

    Google Scholar 

  4. OSM Experience with NFV architecture, interfaces and information models (May 2018). https://osm.etsi.org/wikipub/index.php/Release_notes_and_whitepapers. Accessed 01 May 2020

  5. Anaemic Domain Models, M. Fowler. https://martinfowler.com/bliki/AnemicDomainModel.html. Accessed 01 May 2020

  6. Desot, T., Portet, F., Vacher, M.: Towards end-to-end spoken intent recognition in smart home. In: Chioreanu, I., Stan, A., Burileanu, D., (Eds.) Speech Technology and Human-Computer Dialogue: 10th International Conference, SpeD 2019, Timisoara, Romania, October 18–19, 2019, Revised Selected Papers (pp. 1–8) (2019)

    Google Scholar 

  7. Soldani, D., Rajatheva, R., Liyanage, M., Liyanage, C., Seneviratne, A.: 5G mobile systems for healthcare. In: Proceedings of the 2017 IEEE 85th Vehicular Technology Conference (VTC Spring) (pp. 1–5). IEEE (2017). https://doi.org/10.1109/VTCSpring.2017.8108602

  8. Lv, Z., Qiao, L., Wang, Q.: Cognitive robotics on 5G networks. ACM Trans. Internet Technol. 21(4), Article 92, 18 (2021). https://doi.org/10.1145/3414842

  9. Yu, H., Lee, H., Jeon, H.: What is 5G? Emerging 5G mobile services and network requirements. Sustainability 2017, 9 (1848). https://doi.org/10.3390/su9101848

    Article  Google Scholar 

  10. Raunholt, T., Rodriguez, I., Mogensen, P., Larsen, M.: Towards a 5G mobile edge cloud planner for autonomous mobile robots. In: Proceedings of the 2021 IEEE 94th Vehicular Technology Conference (VTC2021-Fall) (pp. 01–05). IEEE (2021). https://doi.org/10.1109/VTC2021-Fall52928.2021.9625208

  11. Abbas, K., Khan, T.A., Afaq, M., Song, W.-C.: Network slice lifecycle management for 5G mobile networks: an intent-based networking approach. IEEE Access 9, 80128–80146 (2021). https://doi.org/10.1109/ACCESS.2021.3084834

    Article  Google Scholar 

  12. Gramaglia, M., Serrano, P., Banchs, A., Costa-Pérez, X., Gutierrez-Estevez, D., Sciancalepore, V.: Flexible connectivity and QoE/QoS management for 5G networks: the 5G NORMA view. In: 2016 IEEE International Conference on Communications Workshops (ICC) (pp. 373–379). Kuala Lumpur, Malaysia (2016). https://doi.org/10.1109/ICCW.2016.7503816

  13. ETSI GR NFV-IFA 022 V3.1.1 (2018–04) Network Functions Virtualisation (NFV) Release 3; Management and orchestration; Report on management and connectivity for multi-site services

    Google Scholar 

  14. Femminella, M., Nencioni, G., Garroppo, R.G., Gonzalez, A.J., Helvik, B.E., Procissi, G.: Orchestration and control in software-defined 5G networks: research challenges. Wireless Commun. Mobile Comput. 2018, 6923867 (2018). https://doi.org/10.1155/2018/6923867

    Article  Google Scholar 

  15. ETSI White Paper on Developing Software for Multi-Access Edge Computing, https://www.etsi.org/images/files/ETSIWhitePapers/etsi_wp20ed2_MEC_SoftwareDevelopment.pdf. Accessed 01 May 2020

  16. Beshley, M., et al.: Customer-oriented quality of service management method for the future intent-based networking. Appl. Sci. 10(22), 8223 (2020). https://doi.org/10.3390/app10228223

  17. Zheng, X., Leivadeas, A., Falkner, M.: Intent-Based Networking management with conflict detection and policy resolution in an enterprise network. Comput. Netw. 219, 109457 (2022). https://doi.org/10.1016/j.comnet.2022.109457

    Article  Google Scholar 

  18. Leivadeas, A., Falkner, M.: VNF Placement Problem: a multi-tenant intent-based networking approach. In: Proceedings of the 24th Conference on Innovation in Clouds, Internet and Networks and Workshops (ICIN) 2021 (pp. 143–150). IEEE (2021). https://doi.org/10.1109/ICIN51074.2021.9385553

  19. Paganelli, F., Paradiso, F., Gherardelli, M., Galletti, G.: Network service description model for VNF orchestration leveraging intent-based SDN interfaces. In: Proceedings of the 2017 IEEE Conference on Network Softwarization (NetSoft) (pp. 1–5). IEEE (2017). https://doi.org/10.1109/NETSOFT.2017.8004210

  20. Rafiq, A., Mehmood, A., Ahmed Khan, T., Abbas, K., Afaq, M., Song, W.-C.: Intent-based end-to-end network service orchestration system for multi-platforms. Sustainability 12(7), 2782 (2020). https://doi.org/10.3390/su12072782

    Article  Google Scholar 

  21. Sophocleous, M., et al.: AI-Driven intent-based networking for 5G enhanced robot autonomy. In: Maglogiannis, I., Iliadis, L., Macintyre, J., Cortez, P. (eds) Artificial Intelligence Applications and Innovations. AIAI 2022 IFIP WG 12.5 International Workshops. AIAI 2022. IFIP Advances in Information and Communication Technology, vol 652. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-08341-9_6

  22. Khalid, O., Khan, I.A., Abbas, A.: Insights into software-defined networking and applications in fog computing. In: Zomaya, A., Abbas, A., Khan, S., Zomaya, A.Y. (eds.) Fog Computing: Theory and Practice. First published: 25 April 2020. Chapter 16 (2020). https://doi.org/10.1002/9781119551713.ch16

  23. Sahni, Y., Cao, J., Jiang, S.: Middleware for multi-robot systems. In: Ammari, H.M. (ed.) Mission-Oriented Sensor Networks and Systems: Art and Science. SSDC, vol. 164, pp. 633–673. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-92384-0_18

    Chapter  Google Scholar 

  24. 5G-ERA. 5th sssgeneration enhanced robot autonomy. european commission. https://5g-era.eu/, 2021–2024

  25. Monir, N., et al.: Seamless handover scheme for MEC/SDN-based vehicular networks. J. Sens. Actuator Netw. 11, 9 (2022). https://doi.org/10.3390/jsan11010009

    Article  Google Scholar 

  26. Hakak, S., et al.: Autonomous vehicles in 5G and beyond: a survey. Veh. Commun. 39, 100551 (2023). https://doi.org/10.1016/j.vehcom.2022.100551ss

  27. Devi, D.H., et al.: 5G technology in healthcare and wearable devices: a review. Sensors 23, 2519 (2023). https://doi.org/10.3390/s23052519

    Article  Google Scholar 

  28. Siriwardhana, Y., Gür, G., Ylianttila, M., Liyanage, M.: The role of 5G for digital healthcare against COVID-19 pandemic: opportunities and challenges. ICT Express, 7(2), 244–252 (2021). ISSN 2405–9595. https://doi.org/10.1016/j.icte.2020.10.002

  29. Huseien, G.F., Shah, K.W.: A review on 5G technology for smart energy management and smart buildings in Singapore. Energy AI 7, 100116 (2022). ISSN 2666–5468. https://doi.org/10.1016/j.egyai.2021.100116

  30. Siurana, J.L., Dimas, M., Barrientos, A., Pairet, È., Pujol, M.: ROS-Industrial: towards an open and scalable industry 4.0 automation system. In: Jeschke, S., Brecher, C., Song, H., Rawat, D.B. (eds.) Industrial Internet of Things. Volume 67 of the book series “Advances in Intelligent Systems and Computing”. Springer International Publishing, pp. 491–503 (2017). https://doi.org/10.1007/978-3-319-42559-7_38

  31. Schaal, S.: Learning robot control. In: Arbib, M.A. (ed.) The Handbook of Brain Theory and Neural Networks, 2nd edn., pp. 983–987. MIT Press, Cambridge, MA (2002)

    Google Scholar 

  32. Schaal, S., Atkeson, C.G.: Learning control in robotics. IEEE Robot. Autom. Mag. 17(2), 20–29 (2010). https://doi.org/10.1109/MRA.2010.936957

    Article  Google Scholar 

  33. Špaňhel, J., Kapinus, M., Dobeš, P., Materna, Z., Juránek, R., Klepárník, P.: Reference NetApps for 5G-ERA - Initial version. In: D4.3, 5th Generation Enhanced Robot Autonomy, European Commission, 30 June 2022

    Google Scholar 

Download references

Acknowledgements

This project has received funding from the European Union’s Horizon 2020 research and innovation programme under the Grant Agreement No 101016681.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas Gavrielides .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 IFIP International Federation for Information Processing

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Gavrielides, A. et al. (2023). Implementing Network Applications for 5G-Enabled Robots Through the 5G-ERA Platform. In: Maglogiannis, I., Iliadis, L., Papaleonidas, A., Chochliouros, I. (eds) Artificial Intelligence Applications and Innovations. AIAI 2023 IFIP WG 12.5 International Workshops. AIAI 2023. IFIP Advances in Information and Communication Technology, vol 677. Springer, Cham. https://doi.org/10.1007/978-3-031-34171-7_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-34171-7_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-34170-0

  • Online ISBN: 978-3-031-34171-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics