Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Predicting Crowd Workers Performance: An Information Quality Case

  • Conference paper
  • First Online:
Web Engineering (ICWE 2023)

Abstract

Supervised machine learning tasks require human-labeled data. Crowdsourcing allows scaling up the labeling process, but the quality of the labels obtained can vary. To address this limitation, we propose methods for predicting label quality based on worker trajectories, i.e., on the sequence of documents workers explore during their crowdsourcing tasks. Trajectories represent a lightweight and non-intrusive form of worker behavior signal. We base our analysis on previously collected datasets composed of thousands of assessment data records including information such as workers’ trajectories, workers’ assessments, and experts’ assessments. We model such behavior sequences as embeddings, to facilitate their management. Then, we: (1) use supervised methods to predict worker performance using a given ground truth; (2) perform an unsupervised analysis to provide insight into crowdsourcing quality when no gold standard is available. We test several supervised approaches which all beat the baseline we propose. Also, we identify significant differences between trajectory clusters in terms of assessments and worker performance. The trajectory-based analysis is a promising direction for non-intrusive worker performance evaluation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 64.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 84.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Available at https://github.com/KevinRoitero/crowdsourcingTruthfulness.

References

  1. ABC and RMIT University: RMIT ABC Fact Check (2021). https://apo.org.au/collection/302996/rmit-abc-fact-check. Accessed 10 June 2021

  2. Agichtein, E., Brill, E., Dumais, S., Ragno, R.: Learning user interaction models for predicting web search result preferences. In: SIGIR, p. 3–10. ACM (2006)

    Google Scholar 

  3. Benham, R., Mackenzie, J., Culpepper, J.S., Moffat, A.: Different keystrokes for different folks: visualizing crowdworker querying behavior. In: CHIIR, pp. 331–335. ACM (2021)

    Google Scholar 

  4. Bhuiyan, M.M., Zhang, A.X., Sehat, C.M., Mitra, T.: Investigating differences in crowdsourced news credibility assessment: raters, tasks, and expert criteria. PACMHCI 4, 1–26 (2020)

    Google Scholar 

  5. Callison-Burch, C.: Fast, cheap, and creative: Evaluating translation quality using amazon’s mechanical turk. In: EMNLP 2009, pp. 286–295. ACM (2009)

    Google Scholar 

  6. Ceolin, D., Noordegraaf, J., Aroyo, L.: Capturing the ineffable: collecting, analysing, and automating web document quality assessments. In: Blomqvist, E., Ciancarini, P., Poggi, F., Vitali, F. (eds.) EKAW 2016. LNCS (LNAI), vol. 10024, pp. 83–97. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-49004-5_6

    Chapter  Google Scholar 

  7. Ceolin, D., Primiero, G., Wielemaker, J., Soprano, M.: Assessing the quality of online reviews using formal argumentation theory. In: Brambilla, M., Chbeir, R., Frasincar, F., Manolescu, I. (eds.) ICWE 2021. LNCS, vol. 12706, pp. 71–87. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-74296-6_6

    Chapter  Google Scholar 

  8. Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: Smote: synthetic minority over-sampling technique. JAIR 16, 321–357 (2002)

    Article  MATH  Google Scholar 

  9. Chen, C., et al.: Tensorflow official model garden (2020). https://github.com/tensorflow/models

  10. Cho, K., van Merriënboer, B., Gulcehre, C., Bahdanau, D., Bougares, F., Schwenk, H., Bengio, Y.: Learning phrase representations using RNN encoder-decoder for statistical machine translation. In: EMNLP, pp. 1724–1734. ACL (2014)

    Google Scholar 

  11. Dekel, O., Shamir, O.: Vox Populi: collecting high-quality labels from a crowd. In: COLT (2009)

    Google Scholar 

  12. Demartini, G., Mizzaro, S., Spina, D.: Human-in-the-loop artificial intelligence for fighting online misinformation: challenges and opportunities. IEEE Bull. 43(3), 65–74 (2020)

    Google Scholar 

  13. Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: Bert: Pre-training of deep bidirectional transformers for language understanding (2019)

    Google Scholar 

  14. Eady, G., Nagler, J., Guess, A., Zilinsky, J., Tucker, J.A.: How many people live in political bubbles on social media? evidence from linked survey and Twitter data. SAGE Open 9(1), 2158244019832705 (2019)

    Google Scholar 

  15. Epstein, Z., Pennycook, G., Rand, D.: Will the crowd game the algorithm?: using layperson judgments to combat misinformation on social media by downranking distrusted sources. In: CHI, pp. 1–11. ACM (2020)

    Google Scholar 

  16. Ester, M., Kriegel, H.P., Sander, J., Xu, X.: A density-based algorithm for discovering clusters in large spatial databases with noise. In: KDD, pp. 226–231. AAAI Press (1996)

    Google Scholar 

  17. Fang, H., Zhang, D., Shu, Y., Guo, G.: Deep learning for sequential recommendation: Algorithms, influential factors, and evaluations (2020)

    Google Scholar 

  18. Flaxman, S., Goel, S., Rao, J.M.: Filter bubbles, echo chambers, and online news consumption. Public Opin. Q. 80(S1), 298–320 (2016)

    Article  Google Scholar 

  19. Guo, F.: Analyzing Workers Trajectories for Performance Evaluation - An Information Quality Assessment case (2021). Master’s Thesis

    Google Scholar 

  20. Han, L., Checco, A., Difallah, D., Demartini, G., Sadiq, S.: Modelling user behavior dynamics with embeddings. In: CIKM 2020, pp. 445–454 (2020)

    Google Scholar 

  21. Han, L., et al.: All Those Wasted Hours: On Task Abandonment in Crowdsourcing. In: WSDM, pp. 321–329. ACM (2019)

    Google Scholar 

  22. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neur. Comp. 9(8), 1735–1780 (1997)

    Article  Google Scholar 

  23. Kalchbrenner, N., Grefenstette, E., Blunsom, P.: A convolutional neural network for modelling sentences. arXiv preprint arXiv:1404.2188 (2014)

  24. La Barbera, D., Roitero, K., Demartini, G., Mizzaro, S., Spina, D.: Crowdsourcing truthfulness: the impact of judgment scale and assessor bias. In: Jose, J.M., et al. (eds.) ECIR 2020. LNCS, vol. 12036, pp. 207–214. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-45442-5_26

    Chapter  Google Scholar 

  25. Li, G., et al.: Misinformation-oriented expert finding in social networks. WWW 23(2), 693–714 (2020)

    Google Scholar 

  26. Lim, S., Jatowt, A., Färber, M., Yoshikawa, M.: Annotating and analyzing biased sentences in news articles using crowdsourcing. In: LREC, pp. 1478–1484. ELRA (2020)

    Google Scholar 

  27. Liu, Y., Wu, Y.F.B.: FNED: a deep network for fake news early detection on social media. TIST 38(3), 1–33 (2020)

    MathSciNet  Google Scholar 

  28. Macqueen, J.: Some methods for classification and analysis of multivariate observations. In: Berkeley Symposium on Mathematical Statistics and Probability, pp. 281–297 (1967)

    Google Scholar 

  29. Maddalena, E., Ceolin, D., Mizzaro, S.: Multidimensional news quality: a comparison of crowdsourcing and nichesourcing. In: INRA, vol. 2482. CEUR-WS.org (2018)

    Google Scholar 

  30. Nguyen, C.T.: Echo chambers and epistemic bubbles. Episteme 17(2), 141–161 (2020)

    Article  Google Scholar 

  31. Olejnik, S.F., Algina, J.: Generalized eta and omega squared statistics: measures of effect size for some common research designs. Psych. Methods 8, 434–47 (2004)

    Article  Google Scholar 

  32. PolitiFact: The Principles of the Truth-O-Meter: PolitiFact’s methodology for independent fact-checking (2020). https://www.politifact.com/article/2018/feb/12/principles-truth-o-meter-politifacts-methodology-i/

  33. Redi, J.A., Hoßfeld, T., Korshunov, P., Mazza, F., Povoa, I., Keimel, C.: Crowdsourcing-based multimedia subjective evaluations: A case study on image recognizability and aesthetic appeal. In: CrowdMM, pp. 29–34. ACM (2013)

    Google Scholar 

  34. Roitero, K., et al.: The COVID-19 infodemic: can the crowd judge recent misinformation objectively? In: CIKM, pp. 1305–1314. ACM (2020)

    Google Scholar 

  35. Schuster, M., Paliwal, K.: Bidirectional recurrent neural networks. TSP 45(11), 2673–2681 (1997)

    Google Scholar 

  36. Soprano, M., et al.: The many dimensions of truthfulness: crowdsourcing misinformation assessments on a multidimensional scale. IP &M 58(6), 102710 (2021)

    Google Scholar 

  37. Sun, F., et al.: Bert4rec: Sequential recommendation with bidirectional encoder representations from transformer. In: CIKM, pp. 1441–1450. Springer (2019)

    Google Scholar 

  38. Uprety, S., et al.: Quantum-like structure in multidimensional relevance judgements. In: Jose, M., et al. (eds.) ECIR 2020. LNCS, vol. 12035, pp. 728–742. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-45439-5_48

    Chapter  Google Scholar 

  39. Wang, W.Y.: “Liar, Liar Pants on Fire”: a new benchmark dataset for fake news detection. In: ACL 2017, pp. 422–426. ACL (2017)

    Google Scholar 

  40. Zampieri, F., Roitero, K., Culpepper, J.S., Kurland, O., Mizzaro, S.: On topic difficulty in IR evaluation: the effect of systems, corpora, and system components. In: SIGIR, pp. 909–912. ACM (2019)

    Google Scholar 

  41. Zhang, Y., Zhang, J., Lease, M., Gwizdka, J.: Multidimensional relevance modeling via psychometrics and crowdsourcing. In: SIGIR, pp. 435–444 (2014)

    Google Scholar 

  42. Zheng, H., Li, D., Hou, W.: Task design, motivation, and participation in crowdsourcing contests. Int. J. Electron. Commer. 15, 57–88 (2011)

    Article  Google Scholar 

  43. Zuccon, G., Leelanupab, T., Whiting, S., Yilmaz, E., Jose, J.M., Azzopardi, L.: Crowdsourcing interactions: using crowdsourcing for evaluating interactive information retrieval systems. Inf. Retr. 16(2), 267–305 (2013)

    Article  Google Scholar 

Download references

Acknowledgments

This research has been partly supported by the Netherlands eScience Center project “The Eye of the Beholder” (project nr. 027.020.G15).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Davide Ceolin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ceolin, D., Roitero, K., Guo, F. (2023). Predicting Crowd Workers Performance: An Information Quality Case. In: GarrigĂłs, I., Murillo RodrĂ­guez, J.M., Wimmer, M. (eds) Web Engineering. ICWE 2023. Lecture Notes in Computer Science, vol 13893. Springer, Cham. https://doi.org/10.1007/978-3-031-34444-2_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-34444-2_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-34443-5

  • Online ISBN: 978-3-031-34444-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics