Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Detecting Hand Hygienic Behaviors In-the-Wild Using a Microphone and Motion Sensor on a Smartwatch

  • Conference paper
  • First Online:
Distributed, Ambient and Pervasive Interactions (HCII 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14037))

Included in the following conference series:

Abstract

In recent years, the emergence of the COVID-19 pandemic has led to new viral variants, such as Omicron. These variants are more harmful and impose more restrictions on people’s daily hygiene habits. Therefore, during the COVID-19 pandemic, it is logical to automatically detect epidemic protective behaviors without user intent. In this study, we used multiple sensor data from an off-the-shelf smartwatch to detect several defined behaviors. To increase the utility and generalizability of the research results, we collected audio and inertial measurement unit (IMU) data from eight participants in real environments over a long period. In the model-building process, we first created a binary classification between hand hygiene behaviors(hand washing, disinfection, and face-touching) and daily behavior. Then, we distinguished between specific hand hygiene behaviors based on audio and IMU. Ultimately, our model achieves 93% classification accuracy for three behaviors(Hand washing, face touching, and disinfection). The results prove that the accuracy of the classification of behaviors has improved remarkably, which also emphasizes the feasibility of recognizing hand hygiene behaviors using inertial acoustic data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Głąbska, D., Skolmowska, D., Guzek, D.: Population-based study of the influence of the COVID-19 pandemic on hand hygiene behaviors-polish adolescents’ COVID-19 experience (place-19) study. Sustainability 12(12), 4930 (2020)

    Article  Google Scholar 

  2. Mondol, M.A.S., Stankovic, J.A.: Hawad: hand washing detection using wrist wearable inertial sensors. In: 2020 16th International Conference on Distributed Computing in Sensor Systems (DCOSS), pp. 11–18. IEEE (2020)

    Google Scholar 

  3. Xu, L., Nishiyama, Y., Sezaki, K.: Enhancing self-protection: what influences human’s epidemic prevention behavior during the COVID-19 pandemic. In: Distributed, A., Interactions, P. (eds.) HCII 2022, Part II. LNCS, vol. 13326, pp. 336–351. Springer, Proceedings (2022). https://doi.org/10.1007/978-3-031-05431-0_23

    Chapter  Google Scholar 

  4. Bhattacharya, S., Adaimi, R., Thomaz, E.: Leveraging sound and wrist motion to detect activities of daily living with commodity smartwatches. Proc. ACM Interact. Mob. Wearable Ubiquit. Technol. 6(2), 1–28 (2022)

    Article  Google Scholar 

  5. Weiss, G.M., Timko, J.L., Gallagher, C.M., Yoneda, K., Schreiber, A.J.: Smartwatch-based activity recognition: a machine learning approach. In: 2016 IEEE-EMBS International Conference on Biomedical and Health Informatics (BHI), pp. 426–429. IEEE (2016)

    Google Scholar 

  6. Chen, X.: Faceoff: detecting face touching with a wrist-worn accelerometer. arXiv preprint arXiv:2008.01769 (2020)

  7. Ellis, K., Godbole, S., Chen, J., Marshall, S., Lanckriet, G., Kerr, J.: Physical activity recognition in free-living from body-worn sensors. In: Proceedings of the 4th International SenseCam and Pervasive Imaging Conference, pp. 88–89 (2013)

    Google Scholar 

  8. Wang, X., et al.: Social distancing alert with smartwatches. arXiv preprint arXiv:2205.06110 (2022)

  9. Kwok, Y.L.A., Gralton, J., McLaws, M.-L.: Face touching: a frequent habit that has implications for hand hygiene. Am. J. Infect. Control 43(2), 112–114 (2015)

    Article  Google Scholar 

  10. Duan, Y., et al.: Predicting hand washing, mask wearing and social distancing behaviors among older adults during the COVID-19 pandemic: an integrated social cognition model. BMC Geriatr. 22(1), 91 (2022)

    Article  Google Scholar 

  11. Lattanzi, E., Calisti, L., Freschi, V.: Automatic unstructured handwashing recognition using smartwatch to reduce contact transmission of pathogens (2022)

    Google Scholar 

  12. Stork, J.A., Spinello, L., Silva, J., Arras, K.O.: Audio-based human activity recognition using non-Markovian ensemble voting. In: IEEE RO-MAN: The 21st IEEE International Symposium on Robot and Human Interactive Communication, pp. 509–514. IEEE (2012)

    Google Scholar 

  13. Siddiqui, N., Chan, R.H.: Multimodal hand gesture recognition using single IMU and acoustic measurements at wrist. PLoS ONE 15(1), e0227039 (2020)

    Article  Google Scholar 

  14. Dittakavi, B., et al.: Pose tutor: an explainable system for pose correction in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3540–3549 (2022)

    Google Scholar 

  15. Samyoun, S., Shubha, S.S., Mondol, M.A.S., Stankovic, J.A.: iWash: a smartwatch handwashing quality assessment and reminder system with real-time feedback in the context of infectious disease. Smart Health 19, 100171 (2021)

    Article  Google Scholar 

  16. Mollyn, V., Ahuja, K., Verma, D., Harrison, C., Goel, M.: Samosa: sensing activities with motion and subsampled audio. Proc. ACM Interact. Mob. Wearable Ubiquit. Technol. 6(3), 1–19 (2022)

    Article  Google Scholar 

  17. Becker, V., Fessler, L., Sörös, G.: Gestear: combining audio and motion sensing for gesture recognition on smartwatches. In: Proceedings of the 2019 ACM International Symposium on Wearable Computers, pp. 10–19 (2019)

    Google Scholar 

  18. Nishiyama, Y., et al.: IOS crowd–sensing won’t hurt a bit!: AWARE framework and sustainable study guideline for iOS platform. In: Streitz, N., Konomi, S. (eds.) HCII 2020. LNCS, vol. 12203, pp. 223–243. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-50344-4_17

    Chapter  Google Scholar 

  19. Gers, F.A., Eck, D., Schmidhuber, J.: Applying LSTM to time series predictable through time-window approaches. In: Dorffner, G., Bischof, H., Hornik, K. (eds.) ICANN 2001. LNCS, vol. 2130, pp. 669–676. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44668-0_93

    Chapter  Google Scholar 

  20. Wen, Q., et al.: Time series data augmentation for deep learning: a survey. arXiv preprint arXiv:2002.12478 (2020)

  21. Um, T.T., et al.: Data augmentation of wearable sensor data for Parkinson’s disease monitoring using convolutional neural networks. In: Proceedings of the 19th ACM International Conference on Multimodal Interaction, pp. 216–220 (2017)

    Google Scholar 

  22. Guan, Y., Plötz, T.: Ensembles of deep LSTM learners for activity recognition using wearables. Proc. ACM Interact. Mob. Wearable Ubiquit. Technol. 1(2), 1–28 (2017)

    Article  Google Scholar 

  23. Desplanques, B., Thienpondt, J., Demuynck, K.: Ecapa-TDNN: emphasized channel attention, propagation and aggregation in TDNN based speaker verification. arXiv preprint arXiv:2005.07143 (2020)

Download references

Acknowledgment

This work was partly supported by National Institute of Information and Communications Technology (NICT), Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haoyu Zhuang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhuang, H., Xu, L., Nishiyama, Y., Sezaki, K. (2023). Detecting Hand Hygienic Behaviors In-the-Wild Using a Microphone and Motion Sensor on a Smartwatch. In: Streitz, N.A., Konomi, S. (eds) Distributed, Ambient and Pervasive Interactions. HCII 2023. Lecture Notes in Computer Science, vol 14037. Springer, Cham. https://doi.org/10.1007/978-3-031-34609-5_34

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-34609-5_34

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-34608-8

  • Online ISBN: 978-3-031-34609-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics