Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Sage: A Multiuser Cooperative Controller for Mobile Edge Systems

  • Conference paper
  • First Online:
Mobile and Ubiquitous Systems: Computing, Networking and Services (MobiQuitous 2022)

Abstract

Mobile devices have become ubiquitous, being used to perform all kinds of daily tasks, from surfing the web, reading e-mails, playing video games, reading and writing documents, and so on. As a result, the edges of the Internet have become resource-rich spaces with millions of devices. To contribute to the world of crowd-sourcing applications being developed for the edge, we propose a new category of applications that require participating users to cooperate among themselves, in order to achieve a common goal. To this end we propose Sage, a distributed middleware for the real-time aggregation of events in the specific context of cooperative control. Sage is a generic framework able to aggregate data received, from a small number to thousands of sources, into a stream of events to be handed out to the final application.

This work was supported by FCT-MCTES via project DeDuCe (PTDC/CCI-COM/32166/2017) and NOVA LINCS (UIDB/04516/2020). We also wish to thank Samsung for supporting this work with state-of-the-art hardware.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The higher the \(\alpha \) factor, the steepest is the CIMD increase and the AIMD decrease.

References

  1. Apache Software Foundation Incubator: Apache Edgent Overview. https://edgent.apache.org/docs/home.html

  2. ArcadeClassics.net: Arkanoid: Classic arcade game video, history and game play overview. https://arcadeclassics.net/80s-game-videos/arkanoid/

  3. Carbone, P., Katsifodimos, A., Ewen, S., Markl, V., Haridi, S., Tzoumas, K.: Apache flink: stream and batch processing in a single engine. Bull. IEEE Comput. Soc. Tech. Committee Data Eng. 36(4) (2015)

    Google Scholar 

  4. Centre for Computing History: Atari Pong. http://www.computinghistory.org.uk/det/4007/Atari-PONG

  5. Dautov, R., Distefano, S.: Stream processing on clustered edge devices. IEEE Trans. Cloud Comput. 10(2), 885–898 (2022)

    Article  Google Scholar 

  6. Dias, J., Silva, J.A., Paulino, H.: Adaptive replica selection in mobile edge environments. In: Hara, T., Yamaguchi, H. (eds.) Mobile and Ubiquitous Systems: Computing, Networking and Services, vol. 419, pp. 243–263. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-94822-1_14

    Chapter  Google Scholar 

  7. Fernando, N., Loke, S.W., Rahayu, W.: Computing with nearby mobile devices: a work sharing algorithm for mobile edge-clouds. IEEE Trans. Cloud Comput. 7(2), 329–343 (2016)

    Article  Google Scholar 

  8. Google: Sensor types | android open source project. https://source.android.com/devices/sensors/sensor-types#game_rotation_vector

  9. Ha, S., Rhee, I., Xu, L.: CUBIC: a new TCP-friendly high-speed TCP variant. ACM SIGOPS Oper. Syst. Rev. 42(5), 64–74 (2008)

    Article  Google Scholar 

  10. Leikas, J., Stromberg, H., Ikonen, V., Suomela, R., Heinila, J.: Multi-user mobile applications and a public display: novel ways for social interaction. In: Fourth Annual IEEE International Conference on Pervasive Computing and Communications (PERCOM 2006), pp. 5-pp. IEEE (2006)

    Google Scholar 

  11. Microsoft: Streaming Analytics - Data Analysis in Real Time. https://azure.microsoft.com/pt-pt/services/stream-analytics/

  12. Mohtasham, A., Barreto, J.P.: RUBIC: online parallelism tuning for co-located transactional memory applications. In: Scheideler, C., Gilbert, S. (eds.) Proceedings of the 28th ACM Symposium on Parallelism in Algorithms and Architectures, SPAA 2016, Asilomar State Beach/Pacific Grove, CA, USA, 11–13 July 2016, pp. 99–108. ACM (2016)

    Google Scholar 

  13. Morales, J., Rosas, E., Hidalgo, N.: Symbiosis: sharing mobile resources for stream processing. In: IEEE Symposium on Computers and Communications, ISCC 2014, Funchal, Madeira, Portugal, 23–26 June 2014, pp. 1–6. IEEE Computer Society (2014)

    Google Scholar 

  14. Renart, E.G., Montes, J.D., Parashar, M.: Data-driven stream processing at the edge. In: 1st IEEE International Conference on Fog and Edge Computing, ICFEC 2017, Madrid, Spain, 14–15 May 2017, pp. 31–40. IEEE Computer Society (2017)

    Google Scholar 

  15. Sajjad, H.P., Danniswara, K., Al-Shishtawy, A., Vlassov, V.: Spanedge: towards unifying stream processing over central and near-the-edge data centers. In: IEEE/ACM Symposium on Edge Computing, SEC 2016, Washington, DC, USA, 27–28 October 2016, pp. 168–178. IEEE Computer Society (2016)

    Google Scholar 

  16. Sanches, P., Silva, J.A., Teófilo, A., Paulino, H.: Data-centric distributed computing on networks of mobile devices. In: Malawski, M., Rzadca, K. (eds.) Euro-Par 2020. LNCS, vol. 12247, pp. 296–311. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-57675-2_19

    Chapter  Google Scholar 

  17. Silva, J.A., Cerqueira, F., Paulino, H., Lourenço, J.M., Leitão, J., Preguiça, N.M.: It’s about thyme: on the design and implementation of a time-aware reactive storage system for pervasive edge computing environments. Future Gener. Comput. Syst. 118, 14–36 (2021)

    Article  Google Scholar 

  18. Toshniwal, A., et al.: Storm@twitter. In: Dyreson, C.E., Li, F., Özsu, M.T. (eds.) International Conference on Management of Data, SIGMOD 2014, Snowbird, UT, USA, 22–27 June 2014, pp. 147–156. ACM (2014)

    Google Scholar 

  19. Vajk, T., Coulton, P., Bamford, W., Edwards, R.: Using a mobile phone as a “wii-like” controller for playing games on a large public display. Int. J. Comput. Games Technol. 2008 (2008)

    Google Scholar 

  20. Xu, J., Palanisamy, B., Wang, Q., Ludwig, H., Gopisetty, S.: Amnis: Optimized stream processing for edge computing. J. Parallel Distributed Comput. 160, 49–64 (2022)

    Article  Google Scholar 

  21. Zaharia, M., et al.: Apache spark: a unified engine for big data processing. Commun. ACM 59(11), 56–65 (2016)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hervé Paulino .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Coelho, N., Ribeiro, D., Paulino, H. (2023). Sage: A Multiuser Cooperative Controller for Mobile Edge Systems. In: Longfei, S., Bodhi, P. (eds) Mobile and Ubiquitous Systems: Computing, Networking and Services. MobiQuitous 2022. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 492. Springer, Cham. https://doi.org/10.1007/978-3-031-34776-4_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-34776-4_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-34775-7

  • Online ISBN: 978-3-031-34776-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics