Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Evaluating Passive Myocardial Stiffness Using in vivo cine, cDTI, and Tagged MRI

  • Conference paper
  • First Online:
Functional Imaging and Modeling of the Heart (FIMH 2023)

Abstract

Increased passive myocardial stiffness is implicated in the pathophysiology of many cardiac diseases, and its in vivo estimation can improve management of heart disease. MRI-driven computational constitutive modeling has been used extensively to evaluate passive myocardial stiffness. This approach requires subject-specific data that is best acquired with different MRI sequences: conventional cine (e.g. bSSFP), tagged MRI (or DENSE), and cardiac diffusion tensor imaging. However, due to the lack of comprehensive datasets and the challenge of incorporating multi-phase and single-phase disparate MRI data, no studies have combined in vivo cine bSSFP, tagged MRI, and cardiac diffusion tensor imaging to estimate passive myocardial stiffness. The objective of this work was to develop a personalized in silico left ventricular model to evaluate passive myocardial stiffness by integrating subject-specific geometric data derived from cine bSSFP, regional kinematics extracted from tagged MRI, and myocardial microstructure measured using in vivo cardiac diffusion tensor imaging. To demonstrate the feasibility of using a complete subject-specific imaging dataset for passive myocardial stiffness estimation, we calibrated a bulk stiffness parameter of a transversely isotropic exponential constitutive relation to match the local kinematic field extracted from tagged MRI. This work establishes a pipeline for developing subject-specific biomechanical ventricular models to probe passive myocardial mechanical behavior, using comprehensive cardiac imaging data from multiple in vivo MRI sequences.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bradley, C., et al.: OpenCMISS: a multi-physics & multi-scale computational infrastructure for the VPH/physiome project. Prog. Biophys. Mol. Biol. 107(1), 32–47 (2011)

    Article  Google Scholar 

  2. Channer, K.S., Culling, W., Wilde, P., Jones, J.V.: Estimation of left ventricular end-diastolic pressure by pulsed Doppler ultrasound. Lancet 1(8488), 1005–1007 (1986)

    Article  Google Scholar 

  3. Conrad, C.H., Brooks, W.W., Hayes, J.A., Sen, S., Robinson, K.G., Bing, O.H.: Myocardial fibrosis and stiffness with hypertrophy and heart failure in the spontaneously hypertensive rat. Circulation 91(1), 161–170 (1995)

    Article  Google Scholar 

  4. Feher, J.: Quantitative Human Physiology. Elsevier, Hoboken (2017)

    Google Scholar 

  5. Freytag, B., et al.: Field-based parameterisation of cardiac muscle structure from diffusion tensors. In: van Assen, H., Bovendeerd, P., Delhaas, T. (eds.) FIMH 2015. LNCS, vol. 9126, pp. 146–154. Springer, Cham (2015)

    Chapter  Google Scholar 

  6. Genet, M., et al.: Heterogeneous growth-induced prestrain in the heart. J. Biomech. 48(10), 2080–2089 (2015)

    Article  Google Scholar 

  7. Geuzaine, C., Remacle, J.F.: Gmsh: a 3-D finite element mesh generator with built-in pre- and post-processing facilities. Int. J. Numer. Method Biomed. Eng. 79(11), 1309–1331 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  8. Guccione, J.M., McCulloch, A.D., Waldman, L.K.: Passive material properties of intact ventricular myocardium determined from a cylindrical model. J. Biomech. Eng. 113(1), 42–55 (1991)

    Article  Google Scholar 

  9. Gupta, K.B., Ratcliffe, M.B., Fallert, M.A., Edmunds, L.H., Bogen, D.K.: Changes in passive mechanical stiffness of myocardial tissue with aneurysm formation. Circulation 89(5), 2315–2326 (1994)

    Article  Google Scholar 

  10. Kolawole, F.O., Peirlinck, M., Cork, T.E., Levenston, M., Kuhl, E., Ennis, D.B.: Validating MRI-derived myocardial stiffness estimates using in vitro synthetic heart models. Ann. Biomed. Eng. 1–4 (2023)

    Google Scholar 

  11. Lazarus, A., Dalton, D., Husmeier, D., Gao, H.: Sensitivity analysis and inverse uncertainty quantification for the left ventricular passive mechanics. Biomech. Model. Mechanobiol. 21, 1–30 (2022)

    Article  Google Scholar 

  12. Loecher, M., Perotti, L.E., Ennis, D.B.: Using synthetic data generation to train a cardiac motion tag tracking neural network. Med. Image Anal. 74, 102223 (2021)

    Article  Google Scholar 

  13. Maas, S.A., Ellis, B.J., Ateshian, G.A., Weiss, J.A.: FEBio: finite elements for biomechanics. J. Biomech. Eng. 134(1), 011005 (2012)

    Article  Google Scholar 

  14. Moulin, K., et al.: In vivo free-breathing DTI and IVIM of the whole human heart using a real-time slice-followed SE-EPI navigator-based sequence: a reproducibility study in healthy volunteers. Magn. Reson. Med. 76(1), 70–82 (2016)

    Article  MathSciNet  Google Scholar 

  15. Nair, A.U., Taggart, D.G., Vetter, F.J.: Optimizing cardiac material parameters with a genetic algorithm. J. Biomech. 40(7), 1646–1650 (2007)

    Article  Google Scholar 

  16. Peirlinck, M., De Beule, M., Segers, P., Rebelo, N.: A modular inverse elastostatics approach to resolve the pressure-induced stress state for in vivo imaging based cardiovascular modeling. J. Mech. Behav. Biomed. Mater. 85, 124–133 (2018)

    Article  Google Scholar 

  17. Peirlinck, M., et al.: Kinematic boundary conditions substantially impact in silico ventricular function. Int. J. Numer. Method Biomed. Eng. 35(1), e3151 (2019)

    Article  Google Scholar 

  18. Perotti, L.E., Magrath, P., Verzhbinsky, I.A., Aliotta, E., Moulin, K., Ennis, D.B.: Microstructurally anchored cardiac kinematics by combining in vivo DENSE MRI and cDTI. In: Pop, M., Wright, G.A. (eds.) FIMH 2017. LNCS, vol. 10263, pp. 381–391. Springer, Cham (2017)

    Chapter  Google Scholar 

  19. Perotti, L.E., Ponnaluri, A.V.S., Krishnamoorthi, S., Balzani, D., Ennis, D.B., Klug, W.S.: Method for the unique identification of hyperelastic material properties using full-field measures. Application to the passive myocardium material response. Int. J. Numer. Method Biomed. Eng. 33(11), e2866 (2017)

    Article  MathSciNet  Google Scholar 

  20. Shmuylovich, L., Chung, C.S., Kovács, S.J.: Point: left ventricular volume during diastasis is the physiological in vivo equilibrium volume and is related to diastolic suction. J. Appl. Physiol. 109(2), 606–608 (2010)

    Article  Google Scholar 

  21. Smith, S.M., et al.: Advances in functional and structural MR image analysis and implementation as FSL. Neuroimage 23(Suppl 1), S208-219 (2004)

    Article  Google Scholar 

  22. Stimm, J., et al.: Personalization of biomechanical simulations of the left ventricle by in-vivo cardiac DTI data: impact of fiber interpolation methods. Front. Physiol. 13, 2485 (2022)

    Article  Google Scholar 

  23. Wang, V.Y., Nielsen, P.M.F., Nash, M.P.: Image-based predictive modeling of heart mechanics. Annu. Rev. Biomed. Eng. 17, 351–383 (2015)

    Article  Google Scholar 

  24. Wang, Z.J., Wang, V.Y., Bradley, C.P., Nash, M.P., Young, A.A., Cao, J.J.: Left ventricular diastolic myocardial stiffness and end-diastolic myofibre stress in human heart failure using personalised biomechanical analysis. J. Cardiovasc. Transl. Res. 11(4), 346–356 (2018)

    Article  Google Scholar 

  25. Weidemann, F., et al.: Impact of myocardial fibrosis in patients with symptomatic severe aortic stenosis. Circulation 120(7), 577–584 (2009)

    Article  Google Scholar 

  26. Zile, M.R., Baicu, C.F., Gaasch, W.H.: Diastolic heart failure-abnormalities in active relaxation and passive stiffness of the left ventricle. N. Engl. J. Med. 350(19), 1953–1959 (2004)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by NSF 2205103 and NIH R01 HL131823 to DBE.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fikunwa O. Kolawole .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kolawole, F.O. et al. (2023). Evaluating Passive Myocardial Stiffness Using in vivo cine, cDTI, and Tagged MRI. In: Bernard, O., Clarysse, P., Duchateau, N., Ohayon, J., Viallon, M. (eds) Functional Imaging and Modeling of the Heart. FIMH 2023. Lecture Notes in Computer Science, vol 13958. Springer, Cham. https://doi.org/10.1007/978-3-031-35302-4_54

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-35302-4_54

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-35301-7

  • Online ISBN: 978-3-031-35302-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics