Abstract
Increased passive myocardial stiffness is implicated in the pathophysiology of many cardiac diseases, and its in vivo estimation can improve management of heart disease. MRI-driven computational constitutive modeling has been used extensively to evaluate passive myocardial stiffness. This approach requires subject-specific data that is best acquired with different MRI sequences: conventional cine (e.g. bSSFP), tagged MRI (or DENSE), and cardiac diffusion tensor imaging. However, due to the lack of comprehensive datasets and the challenge of incorporating multi-phase and single-phase disparate MRI data, no studies have combined in vivo cine bSSFP, tagged MRI, and cardiac diffusion tensor imaging to estimate passive myocardial stiffness. The objective of this work was to develop a personalized in silico left ventricular model to evaluate passive myocardial stiffness by integrating subject-specific geometric data derived from cine bSSFP, regional kinematics extracted from tagged MRI, and myocardial microstructure measured using in vivo cardiac diffusion tensor imaging. To demonstrate the feasibility of using a complete subject-specific imaging dataset for passive myocardial stiffness estimation, we calibrated a bulk stiffness parameter of a transversely isotropic exponential constitutive relation to match the local kinematic field extracted from tagged MRI. This work establishes a pipeline for developing subject-specific biomechanical ventricular models to probe passive myocardial mechanical behavior, using comprehensive cardiac imaging data from multiple in vivo MRI sequences.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Bradley, C., et al.: OpenCMISS: a multi-physics & multi-scale computational infrastructure for the VPH/physiome project. Prog. Biophys. Mol. Biol. 107(1), 32–47 (2011)
Channer, K.S., Culling, W., Wilde, P., Jones, J.V.: Estimation of left ventricular end-diastolic pressure by pulsed Doppler ultrasound. Lancet 1(8488), 1005–1007 (1986)
Conrad, C.H., Brooks, W.W., Hayes, J.A., Sen, S., Robinson, K.G., Bing, O.H.: Myocardial fibrosis and stiffness with hypertrophy and heart failure in the spontaneously hypertensive rat. Circulation 91(1), 161–170 (1995)
Feher, J.: Quantitative Human Physiology. Elsevier, Hoboken (2017)
Freytag, B., et al.: Field-based parameterisation of cardiac muscle structure from diffusion tensors. In: van Assen, H., Bovendeerd, P., Delhaas, T. (eds.) FIMH 2015. LNCS, vol. 9126, pp. 146–154. Springer, Cham (2015)
Genet, M., et al.: Heterogeneous growth-induced prestrain in the heart. J. Biomech. 48(10), 2080–2089 (2015)
Geuzaine, C., Remacle, J.F.: Gmsh: a 3-D finite element mesh generator with built-in pre- and post-processing facilities. Int. J. Numer. Method Biomed. Eng. 79(11), 1309–1331 (2009)
Guccione, J.M., McCulloch, A.D., Waldman, L.K.: Passive material properties of intact ventricular myocardium determined from a cylindrical model. J. Biomech. Eng. 113(1), 42–55 (1991)
Gupta, K.B., Ratcliffe, M.B., Fallert, M.A., Edmunds, L.H., Bogen, D.K.: Changes in passive mechanical stiffness of myocardial tissue with aneurysm formation. Circulation 89(5), 2315–2326 (1994)
Kolawole, F.O., Peirlinck, M., Cork, T.E., Levenston, M., Kuhl, E., Ennis, D.B.: Validating MRI-derived myocardial stiffness estimates using in vitro synthetic heart models. Ann. Biomed. Eng. 1–4 (2023)
Lazarus, A., Dalton, D., Husmeier, D., Gao, H.: Sensitivity analysis and inverse uncertainty quantification for the left ventricular passive mechanics. Biomech. Model. Mechanobiol. 21, 1–30 (2022)
Loecher, M., Perotti, L.E., Ennis, D.B.: Using synthetic data generation to train a cardiac motion tag tracking neural network. Med. Image Anal. 74, 102223 (2021)
Maas, S.A., Ellis, B.J., Ateshian, G.A., Weiss, J.A.: FEBio: finite elements for biomechanics. J. Biomech. Eng. 134(1), 011005 (2012)
Moulin, K., et al.: In vivo free-breathing DTI and IVIM of the whole human heart using a real-time slice-followed SE-EPI navigator-based sequence: a reproducibility study in healthy volunteers. Magn. Reson. Med. 76(1), 70–82 (2016)
Nair, A.U., Taggart, D.G., Vetter, F.J.: Optimizing cardiac material parameters with a genetic algorithm. J. Biomech. 40(7), 1646–1650 (2007)
Peirlinck, M., De Beule, M., Segers, P., Rebelo, N.: A modular inverse elastostatics approach to resolve the pressure-induced stress state for in vivo imaging based cardiovascular modeling. J. Mech. Behav. Biomed. Mater. 85, 124–133 (2018)
Peirlinck, M., et al.: Kinematic boundary conditions substantially impact in silico ventricular function. Int. J. Numer. Method Biomed. Eng. 35(1), e3151 (2019)
Perotti, L.E., Magrath, P., Verzhbinsky, I.A., Aliotta, E., Moulin, K., Ennis, D.B.: Microstructurally anchored cardiac kinematics by combining in vivo DENSE MRI and cDTI. In: Pop, M., Wright, G.A. (eds.) FIMH 2017. LNCS, vol. 10263, pp. 381–391. Springer, Cham (2017)
Perotti, L.E., Ponnaluri, A.V.S., Krishnamoorthi, S., Balzani, D., Ennis, D.B., Klug, W.S.: Method for the unique identification of hyperelastic material properties using full-field measures. Application to the passive myocardium material response. Int. J. Numer. Method Biomed. Eng. 33(11), e2866 (2017)
Shmuylovich, L., Chung, C.S., Kovács, S.J.: Point: left ventricular volume during diastasis is the physiological in vivo equilibrium volume and is related to diastolic suction. J. Appl. Physiol. 109(2), 606–608 (2010)
Smith, S.M., et al.: Advances in functional and structural MR image analysis and implementation as FSL. Neuroimage 23(Suppl 1), S208-219 (2004)
Stimm, J., et al.: Personalization of biomechanical simulations of the left ventricle by in-vivo cardiac DTI data: impact of fiber interpolation methods. Front. Physiol. 13, 2485 (2022)
Wang, V.Y., Nielsen, P.M.F., Nash, M.P.: Image-based predictive modeling of heart mechanics. Annu. Rev. Biomed. Eng. 17, 351–383 (2015)
Wang, Z.J., Wang, V.Y., Bradley, C.P., Nash, M.P., Young, A.A., Cao, J.J.: Left ventricular diastolic myocardial stiffness and end-diastolic myofibre stress in human heart failure using personalised biomechanical analysis. J. Cardiovasc. Transl. Res. 11(4), 346–356 (2018)
Weidemann, F., et al.: Impact of myocardial fibrosis in patients with symptomatic severe aortic stenosis. Circulation 120(7), 577–584 (2009)
Zile, M.R., Baicu, C.F., Gaasch, W.H.: Diastolic heart failure-abnormalities in active relaxation and passive stiffness of the left ventricle. N. Engl. J. Med. 350(19), 1953–1959 (2004)
Acknowledgements
This work was supported by NSF 2205103 and NIH R01 HL131823 to DBE.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Kolawole, F.O. et al. (2023). Evaluating Passive Myocardial Stiffness Using in vivo cine, cDTI, and Tagged MRI. In: Bernard, O., Clarysse, P., Duchateau, N., Ohayon, J., Viallon, M. (eds) Functional Imaging and Modeling of the Heart. FIMH 2023. Lecture Notes in Computer Science, vol 13958. Springer, Cham. https://doi.org/10.1007/978-3-031-35302-4_54
Download citation
DOI: https://doi.org/10.1007/978-3-031-35302-4_54
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-35301-7
Online ISBN: 978-3-031-35302-4
eBook Packages: Computer ScienceComputer Science (R0)