Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Evaluation of Mechanical Unloading of a Patient-Specific Left Ventricle: A Numerical Comparison Study

  • Conference paper
  • First Online:
Functional Imaging and Modeling of the Heart (FIMH 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13958))

Abstract

In this study, we use a finite element model of left ventricular (LV) mechanics to evaluate the mechanical unloading of an end-diastolic (ED) geometry by using two different unloading algorithms: a direct method, and an iterative method. Furthermore, we evaluated the effects of using isotropic or anisotropic material properties. One representative ED geometry was derived from an atlas of LV geometries and used for mechanical unloading. We used a volume criterion instead of the more commonly used pressure criterion. The direct and iterative method gave identical results in unloaded geometries. Isotropic versus anisotropic material properties gave only minor differences in geometry. The main effect was found in unloading pressure. Overall, we conclude that both unloading algorithms can be used in further research. However, from a physiological and computational point of view, the direct method is preferable to the iterative method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Barbarotta, L., Bovendeerd, P.: A computational approach on sensitivity of left ventricular wall strains to geometry. In: Coudière, Y., Ozenne, V., Vigmond, E., Zemzemi, N. (eds.) FIMH 2019. LNCS, vol. 11504, pp. 240–248. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-21949-9_26

    Chapter  Google Scholar 

  2. Bols, J., Degroote, J., Trachet, B., Verhegghe, B., Segers, P., Vierendeels, J.: A computational method to assess the in vivo stresses and unloaded configuration of patient-specific blood vessels. J. Comput. Appl. Math. 246, 10–17 (2013). https://doi.org/10.1016/j.cam.2012.10.034

    Article  MathSciNet  MATH  Google Scholar 

  3. Bovendeerd, P.H.M., Kroon, W., Delhaas, T.: Determinants of left ventricular shear strain. Am. J. Physiol. Heart Circ. Physiol. 297(3), H1058–H1068 (2009). https://doi.org/10.1152/ajpheart.01334.2008

    Article  Google Scholar 

  4. Bovendeerd, P., Arts, T., Huyghe, J., van Campen, D., Reneman, R.: Dependence of local left ventricular wall mechanics on myocardial fiber orientation: a model study. J. Biomech. 25(10), 1129–1140 (1992). https://doi.org/10.1016/0021-9290(92)90069-d

    Article  Google Scholar 

  5. Delhaas, T., Arts, T., Bovendeerd, P.H., Prinzen, F.W., Reneman, R.S.: Subepicardial fiber strain and stress as related to left ventricular pressure and volume. Am. J. Physiol. Heart Circ. Physiol. 264(5), H1548–H1559 (1993). https://doi.org/10.1152/ajpheart.1993.264.5.h1548

    Article  Google Scholar 

  6. Finsberg, H., et al.: Efficient estimation of personalized biventricular mechanical function employing gradient-based optimization. Int. J. Numer. Meth. Biomed. Eng. 34(7), e2982 (2018). https://doi.org/10.1002/cnm.2982

    Article  MathSciNet  Google Scholar 

  7. Govindjee, S., Mihalic, P.A.: Computational methods for inverse deformations in quasi-incompressible finite elasticity. Int. J. Numer. Meth. Eng. 43(5), 821–838 (1998). https://doi.org/10.1002/(sici)1097-0207(19981115)43:5<821::aid-nme453>3.0.co;2-c

  8. Krishnamurthy, A., Villongco, C.T., Chuang, J., Frank, L.R., Nigam, V., Belezzuoli, E., Stark, P., Krummen, D.E., Narayan, S., Omens, J.H., et al.: Patient-specific models of cardiac biomechanics. J. Comput. Phys. 244, 4–21 (2013). https://doi.org/10.1016/j.jcp.2012.09.015

    Article  Google Scholar 

  9. Lu, J., Zhou, X., Raghavan, M.L.: Inverse elastostatic stress analysis in pre-deformed biological structures: demonstration using abdominal aortic aneurysms. J. Biomech. 40(3), 693–696 (2007). https://doi.org/10.1016/j.jbiomech.2006.01.015

    Article  Google Scholar 

  10. Marx, L., Niestrawska, J.A., Gsell, M.A., Caforio, F., Plank, G., Augustin, C.M.: Robust and efficient fixed-point algorithm for the inverse elastostatic problem to identify myocardial passive material parameters and the unloaded reference configuration. J. Comput. Phys. 463, 111266 (2022). https://doi.org/10.1016/j.jcp.2022.111266

    Article  MathSciNet  MATH  Google Scholar 

  11. McCulloch, A.D., Smaill, B.H., Hunter, P.J.: Regional left ventricular epicardial deformation in the passive dog heart. Circ. Res. 64(4), 721–733 (1989). https://doi.org/10.1161/01.res.64.4.721

    Article  Google Scholar 

  12. Medrano-Gracia, P., et al.: Left ventricular shape variation in asymptomatic populations: the multi-ethnic study of atherosclerosis. J. Cardiovasc. Magn. Reson. 16(1), 1–10 (2014). https://doi.org/10.1186/s12968-014-0056-2

    Article  Google Scholar 

  13. Nikolić, S.: Passive properties of canine left ventricle: diastolic stiffness and restoring forces. Circ. Res. 62(6), 1210–1222 (1988). https://doi.org/10.1161/01.res.62.6.1210

    Article  Google Scholar 

  14. Nikou, A.: Effects of using the unloaded configuration in predicting the in vivo diastolic properties of the heart. Comput. Meth. Biomech. Biomed. Eng. 19(16), 1714–1720 (2016). https://doi.org/10.1080/10255842.2016.1183122

    Article  Google Scholar 

  15. Rausch, M.K., Genet, M., Humphrey, J.D.: An augmented iterative method for identifying a stress-free reference configuration in image-based biomechanical modeling. J. Biomech. 58, 227–231 (2017). https://doi.org/10.1016/j.jbiomech.2017.04.021

    Article  Google Scholar 

Download references

Acknowledgements

This work is funded by European Union’s Horizon 2020 research and innovation program under grant agreement 874827 .

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Britt P. van Kerkhof .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kerkhof, B.P.v., Janssens, K.L.P.M., Barbarotta, L., Bovendeerd, P.H.M. (2023). Evaluation of Mechanical Unloading of a Patient-Specific Left Ventricle: A Numerical Comparison Study. In: Bernard, O., Clarysse, P., Duchateau, N., Ohayon, J., Viallon, M. (eds) Functional Imaging and Modeling of the Heart. FIMH 2023. Lecture Notes in Computer Science, vol 13958. Springer, Cham. https://doi.org/10.1007/978-3-031-35302-4_59

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-35302-4_59

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-35301-7

  • Online ISBN: 978-3-031-35302-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics