Abstract
In this study, we use a finite element model of left ventricular (LV) mechanics to evaluate the mechanical unloading of an end-diastolic (ED) geometry by using two different unloading algorithms: a direct method, and an iterative method. Furthermore, we evaluated the effects of using isotropic or anisotropic material properties. One representative ED geometry was derived from an atlas of LV geometries and used for mechanical unloading. We used a volume criterion instead of the more commonly used pressure criterion. The direct and iterative method gave identical results in unloaded geometries. Isotropic versus anisotropic material properties gave only minor differences in geometry. The main effect was found in unloading pressure. Overall, we conclude that both unloading algorithms can be used in further research. However, from a physiological and computational point of view, the direct method is preferable to the iterative method.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Barbarotta, L., Bovendeerd, P.: A computational approach on sensitivity of left ventricular wall strains to geometry. In: Coudière, Y., Ozenne, V., Vigmond, E., Zemzemi, N. (eds.) FIMH 2019. LNCS, vol. 11504, pp. 240–248. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-21949-9_26
Bols, J., Degroote, J., Trachet, B., Verhegghe, B., Segers, P., Vierendeels, J.: A computational method to assess the in vivo stresses and unloaded configuration of patient-specific blood vessels. J. Comput. Appl. Math. 246, 10–17 (2013). https://doi.org/10.1016/j.cam.2012.10.034
Bovendeerd, P.H.M., Kroon, W., Delhaas, T.: Determinants of left ventricular shear strain. Am. J. Physiol. Heart Circ. Physiol. 297(3), H1058–H1068 (2009). https://doi.org/10.1152/ajpheart.01334.2008
Bovendeerd, P., Arts, T., Huyghe, J., van Campen, D., Reneman, R.: Dependence of local left ventricular wall mechanics on myocardial fiber orientation: a model study. J. Biomech. 25(10), 1129–1140 (1992). https://doi.org/10.1016/0021-9290(92)90069-d
Delhaas, T., Arts, T., Bovendeerd, P.H., Prinzen, F.W., Reneman, R.S.: Subepicardial fiber strain and stress as related to left ventricular pressure and volume. Am. J. Physiol. Heart Circ. Physiol. 264(5), H1548–H1559 (1993). https://doi.org/10.1152/ajpheart.1993.264.5.h1548
Finsberg, H., et al.: Efficient estimation of personalized biventricular mechanical function employing gradient-based optimization. Int. J. Numer. Meth. Biomed. Eng. 34(7), e2982 (2018). https://doi.org/10.1002/cnm.2982
Govindjee, S., Mihalic, P.A.: Computational methods for inverse deformations in quasi-incompressible finite elasticity. Int. J. Numer. Meth. Eng. 43(5), 821–838 (1998). https://doi.org/10.1002/(sici)1097-0207(19981115)43:5<821::aid-nme453>3.0.co;2-c
Krishnamurthy, A., Villongco, C.T., Chuang, J., Frank, L.R., Nigam, V., Belezzuoli, E., Stark, P., Krummen, D.E., Narayan, S., Omens, J.H., et al.: Patient-specific models of cardiac biomechanics. J. Comput. Phys. 244, 4–21 (2013). https://doi.org/10.1016/j.jcp.2012.09.015
Lu, J., Zhou, X., Raghavan, M.L.: Inverse elastostatic stress analysis in pre-deformed biological structures: demonstration using abdominal aortic aneurysms. J. Biomech. 40(3), 693–696 (2007). https://doi.org/10.1016/j.jbiomech.2006.01.015
Marx, L., Niestrawska, J.A., Gsell, M.A., Caforio, F., Plank, G., Augustin, C.M.: Robust and efficient fixed-point algorithm for the inverse elastostatic problem to identify myocardial passive material parameters and the unloaded reference configuration. J. Comput. Phys. 463, 111266 (2022). https://doi.org/10.1016/j.jcp.2022.111266
McCulloch, A.D., Smaill, B.H., Hunter, P.J.: Regional left ventricular epicardial deformation in the passive dog heart. Circ. Res. 64(4), 721–733 (1989). https://doi.org/10.1161/01.res.64.4.721
Medrano-Gracia, P., et al.: Left ventricular shape variation in asymptomatic populations: the multi-ethnic study of atherosclerosis. J. Cardiovasc. Magn. Reson. 16(1), 1–10 (2014). https://doi.org/10.1186/s12968-014-0056-2
Nikolić, S.: Passive properties of canine left ventricle: diastolic stiffness and restoring forces. Circ. Res. 62(6), 1210–1222 (1988). https://doi.org/10.1161/01.res.62.6.1210
Nikou, A.: Effects of using the unloaded configuration in predicting the in vivo diastolic properties of the heart. Comput. Meth. Biomech. Biomed. Eng. 19(16), 1714–1720 (2016). https://doi.org/10.1080/10255842.2016.1183122
Rausch, M.K., Genet, M., Humphrey, J.D.: An augmented iterative method for identifying a stress-free reference configuration in image-based biomechanical modeling. J. Biomech. 58, 227–231 (2017). https://doi.org/10.1016/j.jbiomech.2017.04.021
Acknowledgements
This work is funded by European Union’s Horizon 2020 research and innovation program under grant agreement 874827 .
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Kerkhof, B.P.v., Janssens, K.L.P.M., Barbarotta, L., Bovendeerd, P.H.M. (2023). Evaluation of Mechanical Unloading of a Patient-Specific Left Ventricle: A Numerical Comparison Study. In: Bernard, O., Clarysse, P., Duchateau, N., Ohayon, J., Viallon, M. (eds) Functional Imaging and Modeling of the Heart. FIMH 2023. Lecture Notes in Computer Science, vol 13958. Springer, Cham. https://doi.org/10.1007/978-3-031-35302-4_59
Download citation
DOI: https://doi.org/10.1007/978-3-031-35302-4_59
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-35301-7
Online ISBN: 978-3-031-35302-4
eBook Packages: Computer ScienceComputer Science (R0)