Abstract
A sound mass is a specific state of the musical texture corresponding to a large number of sound events concentrated within a short time and/or frequency interval. Conceptually, it is associated with the work of György Ligeti, Krzysztof Penderecki, and Iannis Xenakis, among others. Recent studies have investigated sound masses via perceptual models, such as Gestalt models of perception and auditory scene analysis, and also from a more acoustic and psychoacoustic perspective obtained through audio recordings. The main goal of this paper is to propose a methodology for the musical analysis of sound mass music through audio recordings combined with other research sources from music theory, musical analysis and psychoacoustics. We apply this method in the analysis of a recording of the first movement of Ligeti’s Ten Pieces for Wind Quintet (1968), and explore relationships between the obtained audio descriptors and Ligeti’s concepts of timbre of movement and permeability, in order to reveal Ligeti’s strategies when dealing with musical texture and sound masses.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Notes
- 1.
In the original, Ligeti uses timbre du mouvement in French and Bewegungsfarbe in German [22, p. 169].
- 2.
From this point onwards this abbreviation will be used instead of Ten Pieces for Wind Quintet.
- 3.
Bark is the unit of Zwicker’s critical bandwidth model [43].
- 4.
For a full revision on roughness curves, see [37].
- 5.
- 6.
- 7.
References
Pople, A.: Modeling musical structure. In: Clarke, E.F., Cook, N. (eds.) Empirical Musicology: Aims, Methods, Prospects, pp. 127–156. Oxford University Press, Oxford, New York (2004)
Antunes, M., Feulo, G., Manzolli, J.: A perceptual approach to Ligeti’s Continuum with a Roughness descriptor. In: Livro de Resumos do II EINEM Encontro Internacional de Investigação de Estudantes em Música e Musicologia, pp. 18–19. Évora (2020)
Antunes, M., Manzolli, J.: A psychoacoustical approach to Ligeti’s concept of permeability. In: Livro de Resumos do II EINEM Encontro Internacional de Investigação de Estudantes em Música e Musicologia, pp. 20–21. Évora (2020)
Antunes, M., Rossetti, D., Manzolli, J.: Emerging structures within micro-time of Ligeti’s Continuum. In: Proceedings of the 2021 International Computer Music Conference, pp. 271–274. Santiago, Chile (2021)
Baraniuk, R.G., Flandrin, P., Janssen, A.J., Michel, O.J.: Measuring time-frequency information content using the rényi entropies. IEEE Trans. Inf. Theory 47(4), 1391–1409 (2001)
Borio, G., Danuser, H.: Die Internationalen Ferienkurse für Neue Musik Darmstadt 1946–1966. Concert program, lectures, masterclasses, tutors. In: Geschichte und Dokumentation in vier Bänden., vol. 3. Rombach (1997)
Bregman, A.S.: Auditory Scene Analysis: The Perceptual Organization of Sound. MIT Press, Cambridge (1994)
Bullock, J.: Implementing audio feature extraction in live electronic music. Ph.D. thesis, Birmingham City University (2008)
Cambouropoulos, E., Tsougras, C.: Auditory streams in ligeti’s continuum: a theoretical and perceptual approach. J. Interdiscip. Music Stud. 3(1–2), 119–137 (2009)
Clendinning, J.P.: Contrapuntal techniques in the music of Gyorgy Ligeti. Ph.D. thesis, Yale University (1990)
Clendinning, J.P.: The pattern-meccanico compositions of György Ligeti. Perspect. New Music 31(1), 192 (1993). https://doi.org/10.2307/833050
Couprie, P.: Graphical representation: an analytical and publication tool for electroacoustic music. Organ. Sound 9(1), 109–113 (2004)
Couprie, P.: Quelques propos sur les outils et les méthodes audionumériques en musicologie. L’interdisciplinarité comme rupture épistémologique. Revue musicale OICRM 6(2), 25–44 (2020). https://doi.org/10.7202/1068384ar
Douglas, C., Noble, J., McAdams, S.: Auditory scene analysis and the perception of sound mass in ligetis continuum. Music Percept. 33, 287–305 (2016). https://doi.org/10.1525/mp.2016.33.3.287
Fastl, H., Zwicker, E.: Psychoacoustics: Facts and Models. No. 22 in Springer series in information sciences, 3rd edn. Springer, Berlin, New York (2007). https://doi.org/10.1007/978-3-540-68888-4
Ferraz, S.: Análise e Percepção Textural: Peça VII, de 10 peças para Gyorgy Ligeti. Cadernos de Estudos: Análise Musical 3, 68–79 (1990)
Figueiredo, N.S.: Efficient adaptive multiresolution representation of music signals. Master dissetation, University of São Paulo (2020)
Floros, C.: György Ligeti: beyond avant-garde and postmodernism. PL Academic Research, Frankfurt am Main (2014)
Fulop, S.A., Fitz, K.: Algorithms for computing the time-corrected instantaneous frequency (reassigned) spectrogram, with applications. J. Acoust. Soc. Am. 119(1), 360–371 (2006)
Huron, D.: Tone and voice: a derivation of the rules of voice-leading from perceptual principles. Music Percept. Interdiscip. J. 19(1), 1–64 (2001)
Krimphoff, J., McAdams, S., Winsberg, S.: Caractérisation du timbre des sons complexes.II. Analyses acoustiques et quantification psychophysique. Le Journal de Physique IV 04(C5), C5–625-C5-628 (1994). https://doi.org/10.1051/jp4:19945134
Ligeti, G.: Neuf essais sur la musique. Éditions Contrechamps, Genève - Suisse (2010)
Ligeti, G., Bernard, J.W., Ligeti, G.: States, events, transformations. Perspect. New Music 31(1), 164 (1993). https://doi.org/10.2307/833047
Malloch, S.N.: Timbre and Technology. PhD Thesis, The University of Edinburgh, Edinburgh (1997)
McAdams, S.: Timbre as a structuring force in music. In: Siedenburg, K., Saitis, C., McAdams, S., Popper, A.N., Fay, R.R. (eds.) Timbre: Acoustics, Perception, and Cognition. SHAR, vol. 69, pp. 211–243. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-14832-4_8
McAdams, S., Depalle, P., Clarke, E.: Analyzing musical sound. In: Empirical Musicology: Aims, Methods, Prospects, pp. 157–196. Oxford University Press, New York (2004)
McFee, B., et al.: librosa: audio and music signal analysis in python. In: 14th Python in Science Conference, pp. 18–24. Austin, Texas (2015). https://doi.org/10.25080/Majora-7b98e3ed-003
Michel, P.: György Ligeti. Minerve, Paris (1995)
Misra, H., Ikbal, S., Bourlard, H., Hermansky, H.: Spectral entropy based feature for robust ASR. In: 2004 IEEE International Conference on Acoustics, Speech, and Signal Processing, vol. 1, pp. I-193 (2004). https://doi.org/10.1109/ICASSP.2004.1325955
Noble, J., McAdams, S.: Sound mass, auditory perception, and ‘post-tone’ music. J. New Music Res. 49(3), 231–251 (2020). https://doi.org/10.1080/09298215.2020.1749673
Peeters, G.: A large set of audio features for sound description (similarity and classification) in the CUIDADO project. CUIDADO IST Proj. Rep. 54, 1–25 (2004)
Plomp, R., Levelt, W.J.M.: Tonal consonance and critical bandwidth. J. Acoust. Soc. Am. 38(4), 548–560 (1965)
Roads, C.: Microsound. MIT Press, Cambridge, Mass (2001)
Sabbe, H.: György Ligeti. In: Donin, N., Feneyrou, L. (eds.) Théories de la composition musicale au XXe siècle, vol. 2. Symétrie, Lyon (2013)
Saitis, C., Weinzierl, S.: The semantics of timbre. In: Siedenburg, K., Saitis, C., McAdams, S., Popper, A.N., Fay, R.R. (eds.) Timbre: Acoustics, Perception, and Cognition. SHAR, vol. 69, pp. 119–149. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-14832-4_5
Sethares, W.A.: Tuning, Timbre, Spectrum, Scale. Springer Science & Business Media, Berlin (1998). https://doi.org/10.1007/978-1-4471-4177-8
Vassilakis, P.N.: Perceptual and physical properties of amplitude fluctuation and their musical significance. PhD Thesis, University of California, Los Angeles, Califórnia (2001)
Vitale, C.: A gradação nas peças 5 e 6 das Dez peças para quinteto de sopros de György Ligeti. In: Anais do I Encontro Internacional de Teoria e Análise Musical, pp. 1–8. São Paulo, Brasil (2009)
Vitale, C.H.: Dez peças para quinteto de sopros de György Ligeti: a gradação como uma ferramenta para a construção do discurso musical. PhD Thesis, Universidade de São Paulo, São Paulo, Brasil (2008)
Williams, W.J., Brown, M.L., Hero III, A.O.: Uncertainty, information, and time-frequency distributions. In: Advanced Signal Processing Algorithms, Architectures, and Implementations II, vol. 1566, pp. 144–156. International Society for Optics and Photonics (1991)
Ystad, S., Aramaki, M., Kronland-Martinet, R.: Timbre from sound synthesis and high-level control perspectives. In: Siedenburg, K., Saitis, C., McAdams, S., Popper, A.N., Fay, R.R. (eds.) Timbre: Acoustics, Perception, and Cognition. SHAR, vol. 69, pp. 361–389. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-14832-4_13
Zattra, L.: Analysis and analyses of electroacoustic music. In: Proceedings of the Sound and Music Computing 2005, p. 10. Salermo, Italy (2005)
Zwicker, E., Flottorp, G., Stevens, S.S.: Critical band width in loudness summation. J. Acoust. Soc. Am. 29(5), 548–557 (1957). https://doi.org/10.1121/1.1908963
Acknowledgments
Micael Antunes is supported by FAPESP Grant 2019/09734-3 and 2021/11880-8, Jônatas Manzolli is supported by CNPq Grant 304431/2018-4 and 429620/2018-7 and Marcelo Queiroz is supported by CNPq Grant 307389/2019-7.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 Springer Nature Switzerland AG
About this paper
Cite this paper
Antunes, M., do Espirito Santo, G.F., Manzolli, J., Queiroz, M. (2023). A Psychoacoustic-Based Methodology for Sound Mass Music Analysis. In: Aramaki, M., Hirata, K., Kitahara, T., Kronland-Martinet, R., Ystad, S. (eds) Music in the AI Era. CMMR 2021. Lecture Notes in Computer Science, vol 13770 . Springer, Cham. https://doi.org/10.1007/978-3-031-35382-6_21
Download citation
DOI: https://doi.org/10.1007/978-3-031-35382-6_21
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-35381-9
Online ISBN: 978-3-031-35382-6
eBook Packages: Computer ScienceComputer Science (R0)