Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Alzheimer Disease Investigation in Resting-State fMRI Images Using Local Coherence Measure

  • Conference paper
  • First Online:
Intelligent Systems Design and Applications (ISDA 2022)

Part of the book series: Lecture Notes in Networks and Systems ((LNNS,volume 716))

  • 337 Accesses

Abstract

In this paper, an advanced voxel-based coherence measure is proposed for Alzheimer’s disease detection and investigation. A public rs-fMRI dataset, including healthy elderly people against Alzheimer and mild cognitive impairment patients, is used for evaluation purpose. Firstly, several sequential pre-processing steps were performed for removing noises, then, the Local Coherence (LCOR) measure of the full frequency band was obtained within the first-level and group-level analysis. Finally, the proposed study accurately investigate the effect of LCOR connectivity, and discovered that left Occipital Pole, left Cerebelum, right Superior Frontal Gyrus, in addition to left and right Caudate regions have a prominent role in Alzheimer’s detection.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Silva, M., Loures, C., Alves, L., Souza, L., Borges, K., Carvalho, M. : Alzheimer’s disease: risk factors and potentially protective measures. J. Biomed. Sci. 26(33) (2019)

    Google Scholar 

  2. Kanaga, P., Mohamed, A., Naleen, J., Logesh, E.: Early detection of alzheimer disease in brain using machine learning techniques. In: International Conference on Smart Structures and Systems (ICSSS). IEEE, Chennai (2022)

    Google Scholar 

  3. Shi, Y., Zeng, W., Deng, J., Nie, W., Zhang, Y.: The identification of Alzheimer’s disease using functional connectivity between activity voxels in resting-state fMRI data. Adv. Intell. Technol. Dementia, IEEE 4 (2020)

    Google Scholar 

  4. Yang, F., Li, Y., Han, Y., Jiang, J.: Use of multilayer network modularity and spatiotemporal network switching rate to explore changes of functional brain networks in Alzheimer’s disease. In: Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC). IEEE, Montreal (2020)

    Google Scholar 

  5. Baninajjar, A., Zadeh, H., Rezaie, S., Nejad, A.: Diagnosis of Alzheimer’s disease by canonical correlation analysis based fusion of multi-modal medical images. In: The 8th IEEE International Conference on E-Health and Bioengineering (EHB). IEEE, Web Conference, Romania (2020)

    Google Scholar 

  6. Sadiq, A., Yahya, N., Tang, T.: Diagnosis of Alzheimer’s disease using Pearson’s correlation and ReliefF feature selection approach. In: International Conference on Decision Aid Sciences and Application (DASA). IEEE, Sakheer (2022)

    Google Scholar 

  7. Mascali, D., et al.: Intrinsic patterns of coupling between correlation and amplitude of low-frequency fMRI fluctuations are disrupted in degenerative dementia mainly due to functional disconnection. PLoS ONE 10(4), 1–18 (2015)

    Article  MathSciNet  Google Scholar 

  8. Sadiq A., Yahya N., Tang T.: Classification of Alzheimer’s disease using low frequency fluctuation of rs-fMRI signals. In: International Conference on Intelligent Cybernetics Technology and Applications (ICICyTA). IEEE, Bandung (2022)

    Google Scholar 

  9. Mascali, D., et al.: Resting-state fMRI in dementia patients. Harvard Dataverse (2015). https://doi.org/10.7910/DVN/29352

  10. Deichmann R., Schwarzbauer C., Turner R.: Optimisation of the 3D MDEFT sequence for anatomical brain imaging: technical implications at 1.5 and 3 T. Neuroimage 21(2), 757–767 (2004)

    Google Scholar 

  11. Serra, L., Giulietti, G., Cercignani, M., Spanò, B., Torso, M., Castelli, D., et al.: Mild cognitive impairment: same identity for different entities. J. Alzheimers Dis. 33(4), 1157–1165 (2013)

    Article  Google Scholar 

  12. Whitfield, S., Nieto, A.: CONN: a functional connectivity toolbox for correlated and anticorrelated brain networks. Brain Connect. 2(3), 125–141 (2012)

    Article  Google Scholar 

  13. Network measures, CONN Toolbox. https://web.conn-toolbox.org/fmri-methods/connectivity-measures/networks-voxel-level. Accessed 19 Oct 2022

  14. Deshpande, G., LaConte, S., Peltier, S., Hu, X.: Integrated local correlation: a new measure of local coherence in fMRI data. Hum. Brain Mapp. 30(1), 13–23 (2009)

    Article  Google Scholar 

  15. Calhoun, D., Adali, T., Pearlson, D., Pekar, J.: A method for making group inferences from functional MRI data using independent component analysis. Hum. Brain Mapp. 14(3), 140–151 (2001)

    Article  Google Scholar 

  16. Assoc Prof Craig Hacking, Occipital pole, Radiopaedia. https://radiopaedia.org/articles/occipital-pole. Accessed 19 Oct 2022

  17. Seghier, L.: The angular gyrus. Neuroscientist 19(1), 43–61 (2013)

    Article  Google Scholar 

  18. Ghez, C., Fahn, S.: The Cerebellum, Principles of Neural Science, 2nd edn, pp. 502–522. Elsevier, New York (1985)

    Google Scholar 

  19. Fine, E., Ionita, C., Lohr, L.: The history of the development of the cerebellar examination. Semin. Neurol. 22(4), 375–384 (2002)

    Article  Google Scholar 

  20. Malenka, R., Nestler, E., Hyman, S.: Molecular Neuropharmacology: A Foundation for Clinical Neuroscience, pp. 147–148. McGraw-Hill Medical, New York (2009)

    Google Scholar 

  21. Superior Frontal Gyrus. http://braininfo.rprc.washington.edu/centraldirectory.aspx?ID=83. Accessed 19 Oct 2022

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sali Issa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Issa, S., Peng, Q., Issa, H. (2023). Alzheimer Disease Investigation in Resting-State fMRI Images Using Local Coherence Measure. In: Abraham, A., Pllana, S., Casalino, G., Ma, K., Bajaj, A. (eds) Intelligent Systems Design and Applications. ISDA 2022. Lecture Notes in Networks and Systems, vol 716. Springer, Cham. https://doi.org/10.1007/978-3-031-35501-1_23

Download citation

Publish with us

Policies and ethics