Abstract
Handwriting Arabic script recognition has become a popular area of research. A survey of such techniques proves to be more necessary. This paper is practically interested in a bibliographic study on the existing recognition systems in an attempt to motivate researchers to look into these techniques and try to develop more advanced ones. It presents a comparative study achieved on certain techniques of handwritten character recognition. In this study, first, we show the difference between different approaches of recognition: deep learning methods vs. holistic and analytic. Then, we present a category of the main techniques used in the field of handwriting recognition and we cite examples of proposed methods.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Krichen, O., Corbillé, S., Anquetil, É., Girard, N., Fromont, É., Nerdeux, P.: Combination of explicit segmentation with Seq2Seq recognition for fine analysis of children handwriting. Int. J. Document Anal. Recogn. (IJDAR), 1–12 (2022)
Mezghani, A., Kallel, F., Kanoun, S., Kherallah, M.: Contribution on character modelling for handwritten Arabic text recognition. In: International Afro-European Conference for Industrial Advancement: AECIA 2016, pp. 370–379 (2016)
Elleuch, M., Jraba, S., Kherallah, M.: The Effectiveness of Transfer Learning for Arabic Handwriting Recognition using Deep CNN. J. Inf. Assurance Sec. 16(2) (2021)
Al-Saffar, A., Awang, S., Al-Saiagh, W., Al-Khaleefa, A. S., Abed, S.A.: A Se-quential Handwriting Recognition Model Based on a Dynamically Configurable CRNN. Sensors, 21(21), 7306 (2021)
Elleuch, M., Kherallah, M.: Convolutional Deep learning network for handwritten Arabic script recognition. In: Abraham, A., Shandilya, S.K., Garcia-Hernandez, L., Varela, M.L. (eds.) HIS 2019. AISC, vol. 1179, pp. 103–112. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-49336-3_11
Malakar, S., Sahoo, S., Chakraborty, A., Sarkar, R., Nasipuri, M.: Handwritten Arabic and Roman word recognition using holistic approach. Visual Comput., 1–24 (2022)
Madhvanath, S., Krpasundar, V., Govindaraju, V.: Syntactic methodology of pruning large lexicons in cursive script recognition. Pattern Recogn. 34(1), 37–46 (2001)
Khorsheed, M.S.: Recognising handwritten Arabic manuscripts using a single hidden Markov model. Pattern Recogn. Lett. 24(14), 2235–2242 (2003)
Jayech, K., Mahjoub, M.A., Ben Amara, N.E.: Synchronous multi-stream hidden Markov model for offline Arabic handwriting recognition without explicit segmentation, Neuro-Computing 214, 958–971 (2016)
Sadhu, S., Mukherjee, A., Mukhopadhyay, B.: A comparative review on machine learning based algorithms to convert handwritten document to English characters. In: Applications of Machine Intelligence in Engineering, pp. 21–529 (2022)
Sayre, K.M.: Machine recognition of handwritten words: A project report. Pattern Recogn. 5(3), 213–228 (1973)
Kundu, S., Paul, S., Bera S.K., Abraham A., Sarkar R.: Text-line extraction from handwritten document images using GAN. Expert Syst. Appli., 140 (2020)
Kohli, M., Kumar, S.: Segmentation of handwritten words into characters. Multimedia Tools Appli. 80(14), 22121–22133 (2021). https://doi.org/10.1007/s11042-021-10638-0
Bozinovic, R.M., Srihari, S.N.: Off-line cursive script word recognition. IEEE Trans. Pattern Anal. Mach. Intell. 1, 68–83 (1989)
Zermi, N., Ramdani, M., Bedda, M.: Arabic handwriting word recognition based on hybride HMM/ANN approach. Int. J. Soft Comput. 2(1), 5–10 (2007)
Touj, S.M., Amara, N.E.B., Amiri, H.: A hybrid approach for off-line Arabic handwriting recognition based on a Planar Hidden Markov modeling. In Ninth International Conference on Document Analysis and Recognition (ICDAR 2007), vol. 2, pp. 964–968, IEEE (September 2007)
Pechwitz, M., Maergner, V., El Abed, H.: Comparison of two different feature sets for offline recognition of handwritten arabic words. In: Tenth International Workshop on Frontiers in Handwriting Recognition.Suvisoft (October 2006)
Noubigh, Z., Mezghani, A., Kherallah, M.: Open vocabulary recognition of offline Arabic handwriting text based on deep learning. In: International Conference on Intelligent Systems, Design and Applications: ISDA 2020
A. Mezghani et M. Kherallah, “Recognizing handwritten Arabic words using optimized character shape models and new features”, International Arab Conference on Information Technology: ACIT’2017
Abandah, G.A., Younis, K.S., Khedher, M.Z. Handwritten Arabic character recognition using multiple classifiers based on letter form. In: Proceedings of the 5th International Conference on Signal Processing, Pattern Recognition, and Applications (SPPRA), pp. 128–133 (February 2008)
Faouzi, Z., Abdelhamid, D., Chaouki, B.M.: An approach based on structural segmentation for the recognition of arabic handwriting (2010)
Azeem, S.A., Ahmed, H.: Effective technique for the recognition of offline Arabic handwritten words using hidden Markov models. Int. J. Document Anal. Recogn.(IJDAR) 16(4), 399–412 (2013). https://doi.org/10.1007/s10032-013-0201-8
Chakraborty, A., De, R., Malakar, S., Schwenker, F., Sarkar, R.: Handwritten digit string recognition using deep autoencoder based segmentation and resnet based recognition approach. In: 2020 25th International Conference on Pattern Recognition (ICPR), pp. 7737–7742. IEEE (January 2021)
Amin, A.: Recognition of hand-printed characters based on structural description and inductive logic programming. Pattern Recogn. Lett. 24(16), 3187–3196 (2003)
Sari, T., Sellami, M.: Cursive Arabic script segmentation and recognition sys-tem. Int. J. Comput. Appl. 27(3), 161–168 (2005)
Mezghani, N.: Densités de probabilité d'entropie maximale etmemoires associatives pour la reconnaissance en ligne de caractères Arabes”, Doctoral thesis, (INRS), Canada, (2005)
Noubigh, Z., Mezghani, A., Kherallah, M.: Densely connected layer to improve VGGnet-based CRNN for Arabic handwriting text line recognition. Int. J. Hybrid Intell. Syst. IJHIS 2021, 1–15 (2021)
Elleuch, M., Tagougui, N., Kherallah, M.: Deep learning for feature extraction of Arabic handwritten script. In: International Conference on Computer Analysis of Images and Patterns, pp. 371–382. Springer, Cham (2015)
Al-Ayyoub, M., Nuseir, A., Alsmearat, K., Jararweh, Y., Gupta, B.: Deep learning for Arabic NLP: A survey. J. Comput. Sci. 26, 522–531 (2018)
Alrobah, N., Albahli, S.: Arabic handwritten recognition using deep learning: a survey. Arabian J. Sci. Eng., 1–21 (2022)
LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings IEEE 86(11), 2278–2324 (1998)
Ranzato, M., Boureau, Y., LeCun, Y.: Sparse feature learning for deep belief networks. In: Proceedings of Annual Conference on Neural Information Processing Systems (NIPS), Canada (2007)
Elleuch, M., Tagougui, N., Kherallah, M.: A novel architecture of CNN based on SVM classifier for recognising Arabic handwritten script. Int. J. Intell. Syst. Technol. Appli. 15(4), 323–340 (2016)
Hinton, G.E., Osindero, S., Teh, Y.W.: A fast learning algorithm for deep belief nets. Neural Comput. 18(7), 1527–1554 (2006)
Lee, H., Grosse, R., Ranganath, R., Ng, A.Y.: Unsupervised learning of hier-archical representations with convolutional deep belief networks. Commun. ACM 54(10), 95–103 (2011)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Mezghani, A., Elleuch, M., Kherallah, M. (2023). DL vs. Traditional ML Algorithms to Recognize Arabic Handwriting Script: A Review. In: Abraham, A., Pllana, S., Casalino, G., Ma, K., Bajaj, A. (eds) Intelligent Systems Design and Applications. ISDA 2022. Lecture Notes in Networks and Systems, vol 716. Springer, Cham. https://doi.org/10.1007/978-3-031-35501-1_41
Download citation
DOI: https://doi.org/10.1007/978-3-031-35501-1_41
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-35500-4
Online ISBN: 978-3-031-35501-1
eBook Packages: Intelligent Technologies and RoboticsIntelligent Technologies and Robotics (R0)