Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

DL vs. Traditional ML Algorithms to Recognize Arabic Handwriting Script: A Review

  • Conference paper
  • First Online:
Intelligent Systems Design and Applications (ISDA 2022)

Part of the book series: Lecture Notes in Networks and Systems ((LNNS,volume 716))

Abstract

Handwriting Arabic script recognition has become a popular area of research. A survey of such techniques proves to be more necessary. This paper is practically interested in a bibliographic study on the existing recognition systems in an attempt to motivate researchers to look into these techniques and try to develop more advanced ones. It presents a comparative study achieved on certain techniques of handwritten character recognition. In this study, first, we show the difference between different approaches of recognition: deep learning methods vs. holistic and analytic. Then, we present a category of the main techniques used in the field of handwriting recognition and we cite examples of proposed methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Krichen, O., Corbillé, S., Anquetil, É., Girard, N., Fromont, É.,  Nerdeux, P.:  Combination of explicit segmentation with Seq2Seq recognition for fine analysis of children handwriting. Int. J. Document Anal. Recogn. (IJDAR), 1–12 (2022)

    Google Scholar 

  2. Mezghani, A., Kallel, F., Kanoun, S.,  Kherallah, M.: Contribution on character modelling for handwritten Arabic text recognition.  In: International Afro-European Conference for Industrial Advancement: AECIA 2016, pp. 370–379 (2016)

    Google Scholar 

  3. Elleuch, M., Jraba, S., Kherallah, M.: The Effectiveness of Transfer Learning for Arabic Handwriting Recognition using Deep CNN. J. Inf. Assurance  Sec. 16(2) (2021)

    Google Scholar 

  4. Al-Saffar, A., Awang, S., Al-Saiagh, W., Al-Khaleefa, A. S.,  Abed, S.A.:  A Se-quential Handwriting Recognition Model Based on a Dynamically Configurable CRNN. Sensors, 21(21), 7306 (2021)

    Google Scholar 

  5. Elleuch, M., Kherallah, M.: Convolutional Deep learning network for handwritten Arabic script recognition. In: Abraham, A., Shandilya, S.K., Garcia-Hernandez, L., Varela, M.L. (eds.) HIS 2019. AISC, vol. 1179, pp. 103–112. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-49336-3_11

  6. Malakar, S., Sahoo, S., Chakraborty, A., Sarkar, R.,  Nasipuri, M.: Handwritten Arabic and Roman word recognition using holistic approach.  Visual Comput., 1–24 (2022)

    Google Scholar 

  7. Madhvanath, S., Krpasundar, V., Govindaraju, V.: Syntactic methodology of pruning large lexicons in cursive script recognition. Pattern Recogn. 34(1), 37–46 (2001)

    Google Scholar 

  8. Khorsheed, M.S.: Recognising handwritten Arabic manuscripts using a single hidden Markov model. Pattern Recogn. Lett. 24(14), 2235–2242 (2003)

    Google Scholar 

  9. Jayech, K., Mahjoub, M.A., Ben Amara, N.E.: Synchronous multi-stream hidden Markov model for offline Arabic handwriting recognition without explicit segmentation, Neuro-Computing 214, 958–971 (2016)

    Google Scholar 

  10. Sadhu, S., Mukherjee, A.,  Mukhopadhyay, B.:  A comparative review on machine learning based algorithms to convert handwritten document to English characters. In: Applications of Machine Intelligence in Engineering, pp. 21–529 (2022)

    Google Scholar 

  11. Sayre, K.M.: Machine recognition of handwritten words: A project report. Pattern Recogn. 5(3), 213–228 (1973)

    Google Scholar 

  12. Kundu, S., Paul, S., Bera S.K., Abraham A., Sarkar R.:  Text-line extraction from handwritten document images using GAN. Expert Syst. Appli., 140 (2020)

    Google Scholar 

  13. Kohli, M., Kumar, S.: Segmentation of handwritten words into characters. Multimedia Tools  Appli. 80(14), 22121–22133 (2021). https://doi.org/10.1007/s11042-021-10638-0

  14. Bozinovic, R.M., Srihari, S.N.: Off-line cursive script word recognition. IEEE Trans. Pattern Anal. Mach. Intell. 1, 68–83 (1989)

    Google Scholar 

  15. Zermi, N., Ramdani, M., Bedda, M.: Arabic handwriting word recognition based on hybride HMM/ANN approach. Int. J. Soft Comput. 2(1), 5–10 (2007)

    Google Scholar 

  16. Touj, S.M., Amara, N.E.B., Amiri, H.:  A hybrid approach for off-line Arabic handwriting recognition based on a Planar Hidden Markov modeling. In Ninth International Conference on Document Analysis and Recognition (ICDAR 2007), vol. 2, pp. 964–968, IEEE (September 2007)

    Google Scholar 

  17. Pechwitz, M., Maergner, V., El Abed, H.: Comparison of two different feature sets for offline recognition of handwritten arabic words. In: Tenth International Workshop on Frontiers in Handwriting Recognition.Suvisoft (October 2006)

    Google Scholar 

  18. Noubigh, Z., Mezghani, A., Kherallah, M.: Open vocabulary recognition of offline Arabic handwriting text based on deep learning. In: International Conference on Intelligent Systems, Design and Applications: ISDA 2020

    Google Scholar 

  19. A. Mezghani et M. Kherallah, “Recognizing handwritten Arabic words using optimized character shape models and new features”, International Arab Conference on Information Technology: ACIT’2017

    Google Scholar 

  20. Abandah, G.A., Younis, K.S., Khedher, M.Z.  Handwritten Arabic character recognition using multiple classifiers based on letter form. In: Proceedings of the 5th International Conference on Signal Processing, Pattern Recognition, and Applications (SPPRA), pp. 128–133 (February 2008)

    Google Scholar 

  21. Faouzi, Z., Abdelhamid, D., Chaouki, B.M.: An approach based on structural segmentation for the recognition of arabic handwriting (2010)

    Google Scholar 

  22. Azeem, S.A., Ahmed, H.: Effective technique for the recognition of offline Arabic handwritten words using hidden Markov models. Int. J. Document Anal. Recogn.(IJDAR) 16(4), 399–412 (2013). https://doi.org/10.1007/s10032-013-0201-8

    Article  Google Scholar 

  23. Chakraborty, A., De, R., Malakar, S., Schwenker, F.,  Sarkar, R.: Handwritten digit string recognition using deep autoencoder based segmentation and resnet based recognition approach. In: 2020 25th International Conference on Pattern Recognition (ICPR), pp. 7737–7742. IEEE (January 2021)

    Google Scholar 

  24. Amin, A.: Recognition of hand-printed characters based on structural description and inductive logic programming. Pattern Recogn. Lett. 24(16), 3187–3196 (2003)

    Google Scholar 

  25. Sari, T., Sellami, M.: Cursive Arabic script segmentation and recognition sys-tem. Int. J. Comput. Appl. 27(3), 161–168 (2005)

    Google Scholar 

  26. Mezghani, N.: Densités de probabilité d'entropie maximale etmemoires associatives pour la reconnaissance en ligne de caractères Arabes”, Doctoral thesis, (INRS), Canada, (2005)

    Google Scholar 

  27. Noubigh, Z.,  Mezghani, A., Kherallah, M.: Densely connected layer to improve VGGnet-based CRNN for Arabic handwriting text line recognition. Int. J. Hybrid Intell. Syst. IJHIS 2021, 1–15 (2021)

    Google Scholar 

  28. Elleuch, M., Tagougui, N., Kherallah, M.: Deep learning for feature extraction of Arabic handwritten script. In: International Conference on Computer Analysis of Images and Patterns, pp. 371–382. Springer, Cham (2015)

    Google Scholar 

  29. Al-Ayyoub, M., Nuseir, A., Alsmearat, K., Jararweh, Y., Gupta, B.: Deep learning for Arabic NLP: A survey. J. Comput. Sci. 26, 522–531 (2018)

    Google Scholar 

  30. Alrobah, N., Albahli, S.: Arabic handwritten recognition using deep learning: a survey. Arabian J. Sci. Eng., 1–21 (2022)

    Google Scholar 

  31. LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition.  Proceedings  IEEE 86(11), 2278–2324 (1998)

    Article  Google Scholar 

  32. Ranzato, M., Boureau, Y., LeCun, Y.:  Sparse feature learning for deep belief networks. In: Proceedings of Annual Conference on Neural Information Processing Systems (NIPS), Canada (2007)

    Google Scholar 

  33. Elleuch, M., Tagougui, N., Kherallah, M.: A novel architecture of CNN based on SVM classifier for recognising Arabic handwritten script. Int. J. Intell. Syst. Technol. Appli. 15(4), 323–340 (2016)

    Google Scholar 

  34. Hinton, G.E., Osindero, S., Teh, Y.W.: A fast learning algorithm for deep belief nets. Neural Comput. 18(7), 1527–1554 (2006)

    Google Scholar 

  35. Lee, H., Grosse, R., Ranganath, R., Ng, A.Y.: Unsupervised learning of hier-archical representations with convolutional deep belief networks. Commun. ACM 54(10), 95–103 (2011)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamed Elleuch .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Mezghani, A., Elleuch, M., Kherallah, M. (2023). DL vs. Traditional ML Algorithms to Recognize Arabic Handwriting Script: A Review. In: Abraham, A., Pllana, S., Casalino, G., Ma, K., Bajaj, A. (eds) Intelligent Systems Design and Applications. ISDA 2022. Lecture Notes in Networks and Systems, vol 716. Springer, Cham. https://doi.org/10.1007/978-3-031-35501-1_41

Download citation

Publish with us

Policies and ethics