Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Interference Detection Among Secondary Users Deployed in Television Whitespace

  • Conference paper
  • First Online:
Intelligent Systems Design and Applications (ISDA 2022)

Abstract

Interference is one of the significant issues in television white space (TVWS) that limits the scalability of secondary user networks, lowers the quality of service, and causes harmful destruction to primary users. Interference among secondary users is one of the severe problems in TVWS because there is no legal rule that governs the coexistence of secondary nodes in the available white space channels. Many studies have been conducted to recognize the presence of primary signals in order to identify spectrum gaps and avoid interference between primary and secondary users, but the majority of them failed to detect interference among secondary users. Furthermore, the few works that mitigate interference among secondary users, rather than detecting it, assume interference. Therefore, in this paper, we develop an interference detection algorithm using an energy detector. To enhance the energy detector’s functionality, we consider dynamic thresholds rather than static ones. We also modify the binary hypothesis to account for interference between two non-cooperative users coexisting in TVWS. We simulate the energy detector technique in MATLAB R2020a environment and utilised various signal-to-noise ratios (SNR) values. With an SNR of −8 dB, the proposed algorithm attains a maximum performance of 95.35% as the probability of detection and meets the standard set by IEEE 802.22 which requires the probability of detection to surpass or equal to 90%.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Cisco. Cisco visual networking index (VNI) global mobile data traffic forecast update, 2017–2022 white paper. Comput. Fraud Secur. pp. 3–5 (2019). http://www.gsma.com/spectrum/wp-content/uploads/2013/03/Cisco_VNI-global-mobile-data-traffic-forecast-update.pdf

  2. Zhou, X., Sun, M., Li, G.Y., Fred Juang, B.H.: Intelligent wireless communications enabled by cognitive radio and machine learning. China Commun. 15(12), 16–48 (2018)

    Google Scholar 

  3. Adetiba, E., Matthews, V.O., John, S.N., Popoola, S.I., Abayomi, A., Chen, K.: NomadicBTS : Evolving cellular communication networks with software-defined radio architecture and open-source technologies. Cogent Eng. 5(1), 1–15 (2018). https://doi.org/10.1080/23311916.2018.1507465

    Article  Google Scholar 

  4. ITU (International Telecommunications Union). Measuring digital development. Facts and figures 2019. ITU Publ. pp. 1–15 (2019). https://www.itu.int/myitu/-/media/Publications/2020-Publications/Measuring-digital-development-2019.pdf

  5. Okokpujie, K., Reuben, A., Ofoche, J.C., Biobelemoye, B.J., Okokpujie, I.P.: A comparative analysis performance of data augmentation on age-invariant face recognition using pretrained residual neural network. J. Theor. Appl. Inf. Technol. 99(6), 1309–1319 (2021)

    Google Scholar 

  6. Ahmed, H., Asaduzzaman.: Channel assignment augmentation algorithm to mitigate interference for heterogeneous ‘tV White Space’ users. In: 2018 Joint 7th International Conference Informatics, Electronics and Vision 2nd International Conference Imaging, Vision Pattern Recognition, ICIEV-IVPR 2018, no. June, pp. 200–205 (2019). https://doi.org/10.1109/ICIEV.2018.8641003

  7. Yun, D.W., Lee, W.C.: Intelligent dynamic spectrum resource management based on sensing data in space-time and frequency domain. Sensors 21(16), 1–21 (2021). https://doi.org/10.3390/s21165261

    Article  Google Scholar 

  8. Zhang, W., Yang, J., Guanglin, Z., Yang, L., Yeo, C.K.: TV white space and its applications in future wireless networks and communications: a survey. IET Commun. 12(20), 2521–2532 (2018). https://doi.org/10.1049/iet-com.2018.5009

    Article  Google Scholar 

  9. Oluwafemi, I.B., Bamisaye, A.P., Faluru, M.A.: Quantitative estimation of TV white space in Southwest Nigeria. Telkomnika (Telecommun. Comput. Electron. Control 19(1), 36–43 (2021). https://doi.org/10.12928/TELKOMNIKA.V19I1.17881

    Article  Google Scholar 

  10. Adekar, R.H., Kureshi, A.K.: Interference Mitigation of Heterogeneous Cognitive Radio Network using Spatial Diversity. 2, 3595–3601 (2019). https://doi.org/10.35940/ijeat.B4039.129219

  11. Ranjan, R., Agrawal, N., Joshi, S.: Interference mitigation and capacity enhancement of cognitive radio networks using modified greedy algorithm/channel assignment and power allocation techniques (2020). https://doi.org/10.1049/iet-com.2018.5950

  12. Wan, R., Ding, L., Xiong, N., Shu, W., Yang, L.: Dynamic dual threshold cooperative spectrum sensing for cognitive radio under noise power uncertainty. HCIS 9(1), 1–21 (2019). https://doi.org/10.1186/s13673-019-0181-x

    Article  Google Scholar 

  13. Luo, J., Zhang, G., Yan, C.: An energy detection-based spectrum-sensing method for cognitive radio. Wirel. Commun. Mob. Comput. 2022, (2022). https://doi.org/10.1155/2022/3933336

  14. Lorincz, J., Ramljak, I.: Algorithm for Evaluating Energy Detection Spectrum Sensing Performance of Cognitive Radio MIMO-OFDM Systems. pp. 1–22 (2021)

    Google Scholar 

  15. Ramírez, G.A., Saavedra, M.A., Araque, J.L.: Analysis of an energy detection algorithm for spectrum sensing. In: Proceedings of 2018 8th IEEE-APS Topical Conference Antennas and Propagation in Wireless Communication APWC 2018, no. September, pp. 924–927 (2018). https://doi.org/10.1109/APWC.2018.8503754

  16. Arjoune, Y., El Mrabet, Z., El Ghazi, H., Tamtaoui, A.: Spectrum sensing: Enhanced energy detection technique based on noise measurement. In: 2018 IEEE 8th Annual Computing and Communication Workshop and Conference CCWC 2018, vol. 2018-Janua, pp. 828–834 (2018). https://doi.org/10.1109/CCWC.2018.8301619

  17. Carrick, M.: Cyclostationary Methods for Communication and Signal Detection Under Interference Interference (2018)

    Google Scholar 

  18. Hendre, V., Murugan, M., Deshmukh, M., Ingle, S.: Transmit Antenna Selection with Optimum Combining for Aggregate Interference in Cognitive Underlay Radio Network. Wireless Pers. Commun. 92(3), 1071–1088 (2016). https://doi.org/10.1007/s11277-016-3593-1

    Article  Google Scholar 

  19. Deshmukh, M.M., Zafaruddin, S.M., Mihovska, A., Prasad, R.: Stochastic-geometry based characterization of aggregate interference in TVWS cognitive radio networks. IEEE Syst. J. 13(3), 2728–2731 (2019). https://doi.org/10.1109/JSYST.2019.2904584

    Article  Google Scholar 

  20. Fajemilehin, T., Yahya, A., Langat, K., Opadiji, J.: Optimizing cognitive radio deployment in cooperative sensing for interference mitigation. BIUST Research and Innovation Symposium 2019 (RDAIS 2019), vol. 2019, no. June, pp. 76–81 (2019). https://drive.google.com/open?id=168whyUBm9_N5lXw0gwGr-yDcYA2sMvys

  21. Al Zubaer, A., Ferdous, S., Amrin, R., Romzan Ali, M., Alamgir Hossain, M.: Detection and false alarm probabilities over non-fading and fading environment. Am. J. Electr. Comput. Eng. 4(2), 49 (2020). https://doi.org/10.11648/j.ajece.20200402.13

  22. Dannana, S., Chapa, B.P., Rao, G.S.: Spectrum sensing for OFDM cognitive radio using matched filter detection. Int. J. Recent Technol. Eng. 8(2), 1443–1448 (2019). https://doi.org/10.35940/ijrte.B2124.078219

    Article  Google Scholar 

  23. kockaya, K., Develi, I.: Spectrum sensing in cognitive radio networks: threshold optimization and analysis. EURASIP J. Wirel. Commun. Netw. 2020(1), 1–19 (2020). https://doi.org/10.1186/s13638-020-01870-7

    Article  Google Scholar 

Download references

Acknowledgement

The Covenant University Centre for Research, Innovation, and Discovery (CUCRID) supported this investigation. This publication would not have been possible without the financial backing that was provided to the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emmanuel Adetiba .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Notcker, J. et al. (2023). Interference Detection Among Secondary Users Deployed in Television Whitespace. In: Abraham, A., Pllana, S., Casalino, G., Ma, K., Bajaj, A. (eds) Intelligent Systems Design and Applications. ISDA 2022. Lecture Notes in Networks and Systems, vol 717. Springer, Cham. https://doi.org/10.1007/978-3-031-35510-3_39

Download citation

Publish with us

Policies and ethics