Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Investigating the Role of Vection, Presence, and Stress on Visually Induced Motion Sickness

  • Conference paper
  • First Online:
Virtual, Augmented and Mixed Reality (HCII 2023)

Abstract

Visually induced motion sickness (VIMS) is a common side-effect when using visual displays such as Virtual Reality applications. The goal of the present study was to further investigate how VIMS is related to the sensations of vection (i.e., illusory self-motion) and presence (i.e., feeling of “being there”). In addition, we explored how acute stress, anxiety, and discomfort may affect the severity of VIMS. A total of 53 participants were exposed to a 15-min-long VIMS-inducing visual stimulus while their level of VIMS was recorded before, during, and after stimulus exposure. Results showed significant, positive correlations between VIMS severity and vection frequency (i.e., the total amount of vection experienced), vection intensity, and presence. Only weak to moderately strong correlations were found for VIMS and stress. Interestingly, regression analysis revealed that vection frequency and the level of discomfort experienced prior to the experiment were the two best predictors of VIMS severity. The results of this study help to better understand how VIMS, vection, and presence are linked to each other and how individual and situational factors add to the experience of VIMS.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Keshavarz, B., Golding, J.F.: Motion sickness: current concepts and management. Curr. Opin. Neurol. 35, 107–112 (2022). https://doi.org/10.1097/WCO.0000000000001018

    Article  Google Scholar 

  2. Kennedy, R.S., Drexler, J., Kennedy, R.C.: Research in visually induced motion sickness. Appl. Ergon. 41, 494–503 (2010). https://doi.org/10.1016/j.apergo.2009.11.006

    Article  Google Scholar 

  3. Keshavarz, B., Murovec, B., Mohanathas, N., Golding, J.F.: The visually induced motion sickness susceptibility questionnaire (vimssq): estimating individual susceptibility to motion sickness-like symptoms when using visual devices. Hum. Factors 65(1), 107–124 (2021). https://doi.org/10.1177/00187208211008687

    Article  Google Scholar 

  4. Reason, J.T.: Motion sickness adaptation: a neural mismatch model. J. R. Soc. Med. 71, 819–829 (1978)

    Article  Google Scholar 

  5. Oman, C.M.: Motion sickness: a synthesis and evaluation of the sensory conflict theory. Can. J. Physiol. Pharmacol. 68, 294–303 (1990)

    Article  Google Scholar 

  6. Riccio, G.E., Stoffregen, T.A.: An ecological theory of motion sickness and postural instability. Ecol. Psychol. 3, 195–240 (1991). https://doi.org/10.1207/s15326969eco0303_2

    Article  Google Scholar 

  7. Smart, L.J., Jr., Stoffregen, T.A., Bardy, B.G.: Visually induced motion sickness predicted by postural instability. Hum. Factors 44, 451–465 (2002)

    Article  Google Scholar 

  8. Ebenholtz, S.M., Cohen, M.M., Linder, B.J.: The possible role of nystagmus in motion sickness: a hypothesis. Aviat. Space Environ. Med. 65, 1032–1035 (1994)

    Google Scholar 

  9. Keshavarz, B., Hecht, H., Lawson, B.D.: Visually induced motion sickness: characteristics, causes, and countermeasures. In: Hale, K.S., Stanney, K.M. (eds.) Handbook of Virtual Environments: Design, Implementation, and Applications, pp. 648–697. CRC Press, Boca Raton, FL (2014)

    Google Scholar 

  10. Lawson, B.D.: Motion sickness symptomatology and origins. In: Hale, K.S., Stanney, K.M. (eds.) Handbook of Virtual Environments: Design, Implementation, and Applications, pp. 531–599. CRC Press (2014)

    Google Scholar 

  11. Palmisano, S., Allison, R.S., Schira, M.M., Barry, R.J.: Future challenges for vection research: definitions, functional significance, measures, and neural bases. Front. Psychol. 6, 193 (2015)

    Article  Google Scholar 

  12. Berti, S., Keshavarz, B.: Neuropsychological approaches to visually-induced vection: an overview and evaluation of neuroimaging and neurophysiological studies. Multisens. Res. 34, 153–186 (2020). https://doi.org/10.1163/22134808-bja10035

    Article  Google Scholar 

  13. Kooijman, L., Asadi, H., Mohamed, S., Nahavandi, S.: A Systematic Review and Meta-Analysis on The Use of Tactile Stimulation in Vection Research (2021). https://psyarxiv.com/pgj3m/

  14. Väljamäe, A.: Auditorily-induced illusory self-motion: a review. Brain Res. Rev. 61, 240–255 (2009). https://doi.org/10.1016/j.brainresrev.2009.07.001

    Article  Google Scholar 

  15. Murovec, B., Spaniol, J., Campos, J.L., Keshavarz, B.: The role of visual, auditory, and tactile cues in the perception of illusory self-motion (vection). In: 3rd Interdisciplinary Navigation Symposium, Virtual Conference (2020)

    Google Scholar 

  16. Hettinger, L.J., Schmidt, T., Jones, D.L., Keshavarz, B.: Illusory self-motion in virtual environments. In: Hale, K.S., Stanney, K.M. (eds.) Handbook of Virtual Environments: Design, Implementation, and Applications, pp. 435–466. CRC Press (2014)

    Google Scholar 

  17. Riecke, B.E., Feuereissen, D., Rieser, J.J., McNamara, T.P.: More than a cool illusion? Functional significance of self-motion illusion (circular vection) for perspective switches. Front. Psychol. 6, 1174 (2015). https://doi.org/10.3389/fpsyg.2015.01174

  18. Hettinger, L.J., Berbaum, K.S., Kennedy, R.S., Dunlap, W.P., Nolan, M.D.: Vection and simulator sickness. Mil. Psychol. 2, 171–181 (1990). https://doi.org/10.1207/s15327876mp0203_4

    Article  Google Scholar 

  19. Keshavarz, B., Riecke, B.E., Hettinger, L.J., Campos, J.L.: Vection and visually induced motion sickness: how are they related? Front. Psychol. 6, 472 (2015). https://doi.org/10.3389/fpsyg.2015.00472

  20. Heeter, C.: Being there: the subjective experience of presence. Presence: Teleoper. Virtual Environ. 1, 262–271 (1992)

    Google Scholar 

  21. Slater, M., Usoh, M., Steed, A.: Depth of presence in virtual environments. Presence: Teleoper. Virtual Environ. 3(2), 130–144 (1994)

    Google Scholar 

  22. Cooper, N., Milella, F., Pinto, C., Cant, I., White, M., Meyer, G.: The effects of substitute multisensory feedback on task performance and the sense of presence in a virtual reality environment. PLoS ONE 13, e0191846 (2018). https://doi.org/10.1371/journal.pone.0191846

    Article  Google Scholar 

  23. Stanney, K.M., Kingdon, K.S., Graeber, D., Kennedy, R.S.: Human performance in immersive virtual environments: effects of exposure duration, user control, and scene complexity. Hum. Perform. 15, 339–366 (2002). https://doi.org/10.1207/S15327043HUP1504_03

    Article  Google Scholar 

  24. Nichols, S., Haldane, C., Wilson, J.R.: Measurement of presence and its consequences in virtual environments. Int. J. Hum. Comput. Stud. 52, 471–491 (2000). https://doi.org/10.1006/ijhc.1999.0343

    Article  Google Scholar 

  25. Baños, R.M., Botella, C., Guerrero, B., Liaño, V., Alcañiz, M., Rey, B.: The third pole of the sense of presence: comparing virtual and imagery spaces. PsychNology J. 3, 90–100 (2005)

    Google Scholar 

  26. Weech, S., Kenny, S., Barnett-Cowan, M.: Presence and cybersickness in virtual reality are negatively related: a review. Front. Psychol. 10, 158 (2019). https://doi.org/10.3389/fpsyg.2019.00158

    Article  Google Scholar 

  27. Cowings, P.S., Suter, S., Toscano, W.B., Kamiya, J., Naifeh, K.: General autonomic components of motion sickness. Psychophysiology 23, 542–551 (1986). https://doi.org/10.1111/j.1469-8986.1986.tb00671.x

    Article  Google Scholar 

  28. Hu, S., Grant, W.F., Stern, R.M., Koch, K.L.: Motion sickness severity and physiological correlates during repeated exposures to a rotating optokinetic drum. Aviat. Space Environ. Med. 62, 308–314 (1991)

    Google Scholar 

  29. Golding, J.F.: Phasic skin conductance activity and motion sickness. Aviat. Space Environ. Med. 63, 165–171 (1992)

    Google Scholar 

  30. Warwick-Evans, L.A., Church, R.E., Hancock, C., Jochim, D., Morris, P.H., Ward, F.: Electrodermal activity as an index of motion sickness. Aviat. Space Environ. Med. 58, 417–423 (1987)

    Google Scholar 

  31. Keshavarz, B., Peck, K., Rezaei, S., Taati, B.: Detecting and predicting visually induced motion sickness with physiological measures in combination with machine learning techniques. Int. J. Psychophysiol. 176, 14–26 (2022). https://doi.org/10.1016/j.ijpsycho.2022.03.006

    Article  Google Scholar 

  32. Muth, E.R.: Motion and space sickness: intestinal and autonomic correlates. Auton. Neurosci. 129, 58–66 (2006). https://doi.org/10.1016/j.autneu.2006.07.020

    Article  Google Scholar 

  33. Gianaros, P.J., Quigley, K.S., Muth, E.R., Levine, M.E., Vasko Jr, R.C., Stern, R.M.: Relationship between temporal changes in cardiac parasympathetic activity and motion sickness severity. Psychophysiology 40, 39–44 (2003)

    Google Scholar 

  34. Harm, D.L.: Motion Sickness Neurophysiology, Physiological Correlates, and Treatment. CRC Press, Boca Raton (2002)

    Google Scholar 

  35. Choukèr, A., et al.: Motion sickness, stress and the endocannabinoid system. PLoS ONE 5, e10752 (2010). https://doi.org/10.1371/journal.pone.0010752

    Article  Google Scholar 

  36. Kohl, R.L.: Endocrine correlates of susceptibility to motion sickness. Aviat. Space Environ Med. 56, 1158–1165 (1985)

    Google Scholar 

  37. Golding, J.F.: Predicting individual differences in motion sickness susceptibility by questionnaire. Pers. Individ. Differ. 41, 237–248 (2006). https://doi.org/10.1016/j.paid.2006.01.012

    Article  Google Scholar 

  38. Lentz, J.M., Collins, W.E.: Motion sickness susceptibility and related behavioral characteristics in men and women. Aviat. Space Environ. Med. 48, 316–322 (1977)

    Google Scholar 

  39. Paillard, A.C., et al.: Motion sickness susceptibility in healthy subjects and vestibular patients: effects of gender, age and trait-anxiety. J. Vestib. Res. 23, 203–209 (2013). https://doi.org/10.3233/VES-130501

    Article  Google Scholar 

  40. D’Amour, S., Bos, J.E., Keshavarz, B.: The efficacy of airflow and seat vibration on reducing visually induced motion sickness. Exp. Brain Res. 235(9), 2811–2820 (2017). https://doi.org/10.1007/s00221-017-5009-1

    Article  Google Scholar 

  41. Peck, K., Russo, F., Campos, J.L., Keshavarz, B.: Examining potential effects of arousal, valence, and likability of music on visually induced motion sickness. Exp. Brain Res. 238(10), 2347–2358 (2020). https://doi.org/10.1007/s00221-020-05871-2

    Article  Google Scholar 

  42. Keshavarz, B., Hecht, H.: Validating an efficient method to quantify motion sickness. Hum. Factors: J. Hum. Factors Ergon. Soc. 53, 415–426 (2011). https://doi.org/10.1177/0018720811403736

    Article  Google Scholar 

  43. Kennedy, R.S., Lane, N.E., Berbaum, K.S., Lilienthal, M.G.: Simulator sickness questionnaire: an enhanced method for quantifying simulator sickness. Int. J. Aviat. Psychol. 3, 203–220 (1993). https://doi.org/10.1207/s15327108ijap0303_3

    Article  Google Scholar 

  44. Henry, J.D., Crawford, J.R.: The short-form version of the depression anxiety stress scales (DASS-21): construct validity and normative data in a large non-clinical sample. Br. J. Clin. Psychol. 44, 227–239 (2005). https://doi.org/10.1348/014466505X29657

    Article  Google Scholar 

  45. Nooij, S.A.E., Pretto, P., Oberfeld, D., Hecht, H., Bülthoff, H.H.: Vection is the main contributor to motion sickness induced by visual yaw rotation: implications for conflict and eye movement theories. PLoS ONE 12, e0175305 (2017). https://doi.org/10.1371/journal.pone.0175305

    Article  Google Scholar 

  46. Liu, C.-L., Uang, S.-T.: Effects of presence on causing cybersickness in the elderly within a 3D virtual store. In: Jacko, J.A. (ed.) HCI 2011. LNCS, vol. 6764, pp. 490–499. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-21619-0_61

    Chapter  Google Scholar 

  47. Ling, Y., Nefs, H.T., Brinkman, W.-P., Qu, C., Heynderickx, I.: The relationship between individual characteristics and experienced presence. Comput. Hum. Behav. 29, 1519–1530 (2013). https://doi.org/10.1016/j.chb.2012.12.010

    Article  Google Scholar 

  48. Golding, J.F., Rafiq, A., Keshavarz, B.: Predicting individual susceptibility to visually induced motion sickness by questionnaire. Front. Virtual Reality 2, 3 (2021). https://doi.org/10.3389/frvir.2021.576871

    Article  Google Scholar 

  49. Witmer, B.G., Singer, M.J.: Measuring presence in virtual environments: a presence questionnaire. Presence: Teleoper. Virtual Environ. 7, 225–240 (1998). https://doi.org/10.1162/105474698565686

Download references

Acknowledgements

This work was supported by Forvia. We thank Robert Shewaga, Bruce Haycock, and Susan Gorski for technological assistance. We also thank Sophia (Yue) Li for administrative support and coordination of project-related activities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Behrang Keshavarz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Keshavarz, B., Umatheva, N., Peck, K. (2023). Investigating the Role of Vection, Presence, and Stress on Visually Induced Motion Sickness. In: Chen, J.Y.C., Fragomeni, G. (eds) Virtual, Augmented and Mixed Reality. HCII 2023. Lecture Notes in Computer Science, vol 14027. Springer, Cham. https://doi.org/10.1007/978-3-031-35634-6_45

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-35634-6_45

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-35633-9

  • Online ISBN: 978-3-031-35634-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics